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Safety in human-multi robot collaborative
scenarios: a trajectory scaling approach

Martina Lippi, Alessandro Marino

University of Salerno, Via Giovanni Paolo II, 132, 84084, Salerno
(SA), Italy ( email: {mlippi,almarino}@unisa.it)

Abstract:
In this paper, a strategy to handle the human safety in a multi-robot scenario is devised. In
the presented framework, it is foreseen that robots are in charge of performing any cooperative
manipulation task which is parameterized by a proper task function. The devised architecture
answers to the increasing demand of strict cooperation between humans and robots, since
it equips a general multi-robot cell with the feature of making robots and human working
together. The human safety is properly handled by defining a safety index which depends both
on the relative position and velocity of the human operator and robots. Then, the multi-robot
task trajectory is properly scaled in order to ensure that the human safety never falls below a
given threshold which can be set in worst conditions according to a minimum allowed distance.
Simulations results are presented in order to prove the effectiveness of the approach.

Keywords: Human-robot collaboration. Trajectory scaling. Multi-robot systems.

1. INTRODUCTION

The close cooperation of humans and robots is a highly
desirable feature since it allows to benefit of the outper-
forming reasoning capabilities of humans and the extreme
precision and strength of robots. However, it is straightfor-
ward to recognize that the human safety is of the utmost
importance in such a scenario which requires, at least, the
robots to be controlled in such a way to not harm human
operators Haddadin et al. (2009). In this regard, initial
regulations about human safety with respect to industrial
robots can be found in the American ANSI/RIA R15.06, in
the European EN 775 or in the more general international
standard ISO 10218 and the technical specification docu-
ment ISO/TS 15066. In detail, the latter exactly focuses
on human-robot collaborative scenarios and envisages four
possible safe interactions:

(1) safety-rated monitored stop, i.e. robots are required
to stop when humans enter the working area;

(2) hand guiding, i.e. robots are required to follow human
manual guidance;

(3) speed and separation monitoring, i.e. robots have to
keep a minimum safety distance from operators;

(4) power and force limiting, i.e. robots are required to
mitigate human harm in the case of impact.

It is clear that interactions 3 and 4 involve integrating the
robot autonomous task with human safety requirements.
As highlighted in Robla-Gómez et al. (2017), this also
requires the inclusion of different sensors whose features
depend on the nature of the interaction: from sensors for
detecting the presence of human operators for collision
prevention, e.g. motion capture systems, range sensors
or artificial vision systems as in Flacco et al. (2012),
to sensors for assessing force exchange when an impact
occurs, e.g. force or tactile sensors as in Cirillo et al. (2016).

1 Authors are in alphabetical order
2 The research leading to these results has received funding from
the European Communitys H2020 Program under grant agreement n.
785419 (EU.3.4.5.4. - ITD Airframe project LABOR - Lean robotized
AssemBly and cOntrol of composite aeRostructures).

Although power and force limiting is crucial in the case
of physical human-robot interaction where contact is un-
avoidable, distance monitoring would be more suitable for
pure coexistence in the working area. In the latter scenario,
it becomes relevant to quantify the level of human safety,
looking at the overall structure of the manipulator as a
source of danger to humans, so that the robots behaviour
can be adapted accordingly. An index based on distance,
velocity and inertial contributions is proposed in Kulić and
Croft (2006) and is evaluated for the nearest point between
each link and the operator; then, such danger index is
exploited to generate a virtual repulsive force according to
artificial potential field theory in Khatib (1985). The study
presented in Lacevic et al. (2013) also focuses on defining
an assessment of human safety which is now based on
velocity and distance terms and is extended to the overall
structure of the manipulator by a proper integration along
each link; a gradient-based technique is then adopted to
drive the manipulator. The previous approaches rely on
pursuing evasive actions to increase safety, however, in in-
dustrial settings, it is generally recommended to follow the
desired task path without deviating from it. This guideline
is broadened in Zanchettin et al. (2016) where robot ve-
locity is modulated in accordance with the distance from
the operator while preserving the nominal task path. A
further approach is presented in Liu and Tomizuka (2016)
and Kimmel and Hirche (2017) where the safe interaction
problem is modeled as an invariance control problem, i.e.
it is based on defining a safe set of robot states for which
no collision occurs and then on making this set invariant.
The previous works show how research regarding human-
robot interaction and, in particular, human safety is a hot
topic; however, to the best of authors’ knowledge, the case
of interaction between human operators and strictly coop-
erative robot systems has not yet been investigated. In this
context, human safety must certainly remain the highest
priority task, but at the same time the coordination of the
robot team must be managed.
Motivated by these considerations, this study presents a
general solution for handling the human safety in a sce-
nario composed by multiple cooperative robots. Starting



from the definition of a safety index depending on the
human operator’s state and on the state of a generic point
of the robot structure, first the safety associated to the
whole robot and, then, to whole team are computed. This
safety measure is adopted to properly modify the robots
trajectories in order to preserve the cooperative task and
so as to not violate the safety requirements. However,
because of the constraint represented by the task itself, this
might result in a too restrictive strategy that might lead
to the violation of the established safety requirements. If
this case occurs, the task is interrupted and an impedance-
based strategy is adopted; the task is then recovered when
the safety conditions are restored.
The devised solution presents several desirable features
with respect to other solutions cited above: (i) it works
for general expressions of the safety index, (ii) it explicitly
takes into account the multi-robot nature of the task, (iii)
it does not modify the task path or require the task to be
aborted unless if strictly necessary.
The paper is organized as follows. Section 2 introduces
the mathematical background and the problem setting. In
Section 3, the adopted safety index is defined and analyzed
in detail, while in Section 4 this index is exploited to define
a safe human-robot interaction strategy. Finally, numerical
simulations and conclusions are presented in Sections 5
and 6, respectively.

2. MATHEMATICAL BACKGROUND

In this paper, we consider a multi-robot work-cell in which
human and robots are allowed to share the same area. In
particular, the cell is composed by N worker robots which
execute the main work the cell is aimed to.
We assume that robots are manipulators eventually
mounted on a mobile base whose general model is

M i(qi)q̈i+Ci(qi, q̇i)q̇i+F iq̇i+gi(qi)=τ i−J
T
i (qi)hi (1)

where qi ∈ IRni (q̇i, q̈i) is the joint position (velocity,
acceleration) vector, τ i ∈ IRni is the joint torque vector,
M i(qi) ∈ IRni×ni is the symmetric positive definite
inertia matrix, Ci(qi, q̇i) ∈ IRni×ni is the centrifugal
and Coriolis terms matrix, F i ∈ IRni×ni is the matrix
modeling viscous friction, gi(qi) ∈ IRni is the vector of
gravity terms, J i(qi) ∈ IRp×ni is the manipulator Jacobian
matrix, and hi ∈ IRp is the vector of interaction forces
between the robot’s end-effector and the environment.
Let qr,i(t) ∈ IRni (q̇r,i(t), q̈r,i(t)) be the joint position
(velocity, acceleration) reference of the i th robot, the
following assumption is made.

Assumption 1. Each robot is equipped with an inner mo-
tion control loop which guarantees tracking of a reference
joint trajectory, i.e. qr,i ≈ qi (q̇r,i ≈ q̇i, q̈r,i ≈ q̈i).

This assumption is realistic for all commercial platforms
and makes the devised solution suitable also for off-the-
shelf robotic platforms for which the low level control layer
is generally not made accessible to directly set the τ i input
in (1).
The second order kinematic relationship is such as

ẍi = J i(qi)q̈i + J̇(qi)q̇i = J i(qi)yi + J̇(qi)q̇i (2)

where xi =
[

pT
i ,φ

T
i

]T
∈ IRp is the end-effector configura-

tion of the i th manipulator with respect to the world frame
expressed in terms of position pi and orientation φi, and
yi = q̈i is the input of the assumed virtual model. For the
sake of notation compactness, the dependence of J i from
its parameter qi is generally omitted in the following.

For the purpose of the overall description of the cell, let
us introduce the collective vectors

x =
[

xT
1 , x

T
2 , . . . , x

T
N

]T
∈ IRNp

q =
[

qT
1 , q

T
2 , . . . , q

T
N

]T
∈ IRn

J(q) = diag{J1(q1), . . . ,JN (qN )} ∈ IRNp×n

(3)

where n =
∑

i

ni.

In what follows, with Om and Im we denote the null and
identity matrices in IRm×m, respectively, and with 0m we
denote the column vector in IRm with all zero elements.

2.1 Problem setting

It is assumed that the cooperative task assigned to robots
is defined by means of a task function σ = σ(x) ∈ IRm as

σ = Jσx, σ̇ = Jσẋ, σ̈ = Jσẍ (4)

being Jσ ∈ IRm×Np the task Jacobian matrix. A flexi-
ble formulation for the task function σ is given by the
absolute-relative variables as in Basile et al. (2012). In
detail, the absolute variables define the position and ori-
entation of the centroid of the end-effector configurations:

σ1 =
1

N

N∑

i=1

xi = Jσ1
x (5)

with Jσ1
= 1

N
1T
N ⊗ Ip ∈ IRp×Np, while the relative

variables represent the team formation:

σ2 = [(xN − xN−1)
T . . . (x2 − x1)

T]T = Jσ2
x (6)

with

Jσ2
=







−Ip Ip Op . . . Op

Op −Ip Ip . . . Op

...
. . .

...
Op . . . Op −Ip Ip






∈ IR(N−1)p×Np (7)

Hence, in virtue of (5) and (6), the task function in (4) is

σ =

[

σ1
σ2

]

=

[

Jσ1

Jσ2

]

x = Jσx (8)

with Jσ ∈ IRNp×Np and m = Np.

The objective is to compute the input yi in (2) in order to
have σ tracking a nominal task trajectory σn(t), allowing
human operators to enter the cell during execution. In
such a scenario, the safety of the humans is the highest
priority task and the robot trajectory must be modified
accordingly. To the aim, the nominal trajectory σn(t) is
first properly modified in order to generate a human-safe
trajectory σr(t) which is the trajectory actually tracked
as it will be detailed in the following.
Moreover, herein it is not of interest to design algorithms
for human detection, while the focus is on defining a
human-safe strategy for the coordination of cooperating
robots. Hence, the following assumption is made.
Assumption 2. If human operators are in the nearby of
the work-cell, either robots are able to detect them or this
information is made available to robots. This information
might concern, for instance, the position of the head or the
chest of the human, or a set of representative points.

As stated above, the control input for the i th robot has
to be such that, globally, the cooperative task described
according to the task function in (8) tracks the reference
σr(t). Hence, the i th virtual input in (2) can be selected
resorting to a standard closed loop inverse kinematic law:

yi=q̈i = J
†
i

(

Γ iJ
†
σ

(

σ̈r+kσ ˙̃σ + λσσ̃
)

−J̇ iq̇i

)

+ q̈n,i (9)



being σ̃ = (σr − σ) ∈ IRm the task tracking error,
q̈n,i ∈ IRni an arbitrary vector of joint accelerations such
as J i(qi)q̈n,i = 0p which might be exploited to locally
optimize secondary objectives, kσ, λσ positive gains and

Γ i = {Op · · · Ip
︸︷︷︸

i th robot

· · · Op} ∈ IRp×Np (10)

a selection matrix. It is easy to recognize that in virtue
of (4) and (2) it holds

Jσ(Jy + J̇ q̇) = Jσẍ = σ̈ = σ̈r+kσ ˙̃σ + λσσ̃

where y =
[

yT
1 , . . . ,y

T
N

]T
and which leads to the following

exponentially stable linear second order dynamics

¨̃σ +kσ ˙̃σ + λσσ̃ = 0m

3. HUMAN SAFETY ASSESSMENT

In this section, we focus on formulating an index to assess
the level of human safety with respect to the team of
robots. The devised safety strategy tries to have the robots
follow the task trajectory σn(t) as much as possible in
compliance with human safety requirements. The basic
idea is to parameterize the nominal trajectory for σ in
(8) through a non-negative non-decreasing scalar function

sn : t ∈ [t0 tf ] → IR

with t0 and tf the initial and final time instant, respec-
tively, and to have the robots cooperatively track

σr(t) = σn(sr(t)) (11)

where sr : t ∈ IR → IR is a properly scaled version of sn(t)
which takes into account the human safety; obviously, this
strategy allows the robots to preserve the task path.
Let us introduce a general safety index which allows to
quantify the level of human safety with respect to a generic
moving point P belonging to the robot structure

f(p, ṗ,po, ṗo) = α1(d) + α2(d, ḋ) (12)

where p ∈ IR3 and ṗ ∈ IR3 are the position and velocity of
point P , respectively, d = ‖p−po‖ is the distance between
the point and the human operator’s position po ∈ IR3

assumed to be available (see Assumption 2), ḋ is the
distance derivative and α1, α2 are generic scalar functions
such as the following properties hold:

Property 1. α1(d) is a non negative continuous monoton-
ically increasing function with respect to d;

Property 2. α2(d, ḋ) is a continuous monotonically in-

creasing function with respect to ḋ and such that:
(a) lim

ḋ→+∞

α2(d, ḋ) = c, ∀d with c ∈ IR+;

(b) ∂α2(d,ḋ)

∂ḋ
6= 0 ∀d and ∀ḋ 6= ∞.

The ratio behind Property 1 is that the human-safety
with respect the point P increases with the distance d.
Concerning Property 2, function α2 is such as the safety
index increases for positive values of ḋ with a slope that
might be modulated by d. The motivation behind the
asymptotic bound c in Property 2(a) for ḋ → +∞ is that
it prevents the safety index to reach a too high value for
high values of ḋ and arbitrarily small values of the distance
d; in this way, the distance parameter is always the high
priority feature. Finally, Property 2(b) ensures that for

finite values of ḋ the index f is sensitive to variation of
velocity ḋ such as by changing ḋ the value of f can be
modified.

By leveraging the approach in Lacevic et al. (2013), the
evaluation of the safety function in (12) can be easily
extended to the entire structure of the i th manipulator
by properly integrating (12) along its structure and obtain
a cumulative safety index F i. In particular, the measure
of human safety with respect to the l th link of the i th
manipulator can be obtained by integrating f along the
volume Vl of link l

F i
l =

∫

Vl

f(p, ṗ,po, ṗo) dp (13)

In order to make the computation of (13) affordable, the
generic link of the i th robot is simplified as a segment
starting at pi

l,0 and ending at pi
l,1, thus (13) becomes







F i
l =

∫ 1

0

f(pi
l,r, ṗ

i
l,r,po, ṗo)dr

pi
l,r = pi

l,0+ r(pi
l,1 − pi

l,0)

ṗi
l,r = ṗi

l,0+ r(ṗi
l,1 − ṗi

l,0)

(14)

Finally, the safety index associated to the i th manipulator
with ni

l links is

F i=

ni

l
+1
∑

l=1

F i
l (15)

where an additional virtual link is introduced to account
for the end-effector and the cooperative task to achieve.

Concerning the derivative of the safety measure in (15),
the following lemma holds.

Lemma 1. The derivative of the cumulative safety func-
tion (15) associated to the i th robot is linear in the path
parameter acceleration s̈r(t), i.e. it is

Ḟ i = µi
1 s̈r + µi

2 (16)

where the expressions of µi
1, µ

i
2∈ IR are provided in the

proof.

Proof. Let us consider the time derivative of the safety
function in (12) associated with a generic point pi

l,r (r ∈

[0 1]) belonging to the l th link of the i th robot; it is

ḟ=

(

∂α1(d
i
l,r)

∂dil,r
+

∂α2(d
i
l,r, ḋ

i
l,r)

∂dil,r

)

ḋil,r +
∂α2(d

i
l,r, ḋ

i
l,r)

∂ḋil,r
d̈il,r

(17)
with dil,r = ‖pi

l,r − po‖, whose second time derivative is

d̈il,r = βT
1 p̈

i
l,r + β2 (18)

where coefficients β1 ∈ IR3, β2 ∈ IR are defined as






β1 =
pi
l,r − po

dil,r
dil,r 6= 0

β2 =−βT
1 p̈o+

‖ṗi
l,r−ṗo‖

dil,r

2

−
[βT

1 (ṗ
i
l,r−ṗo)]

dil,r

2

dil,r 6= 0

At this point, let us consider the well-known relation
between the linear acceleration of a point belonging to the
structure of a manipulator and its joint variables, i.e.

p̈i
l,r = J i

l,r(qi)q̈i + J̇ i
l,r(qi, q̇i)q̇i (19)

being J i
l,r ∈ IR3×ni the positional Jacobian matrix associ-

ated to pi
l,r. Now, by partially deriving the reference task

function in (11) with respect to sr, it holds

σ̇r =
∂σr

∂sr
ṡr, σ̈r =

∂2σr

∂s2r
ṡ2r +

∂σr

∂sr
s̈r



and in virtue of (9), equation (19) can be expressed as

p̈i
l,r = γ1s̈r + γ2 (20)

where γ1,γ2 ∈ IR3 are defined as






γ1 = J i
l,rJ

†
iΓ iJ

†
σ

∂σr

∂sr

γ2 = J i
l,r[J

†
iΓ iJ

†
σ

(
∂2σr

∂s2r
ṡ2r +kσ ˙̃σ + λσσ̃

)

−J
†
i J̇ iq̇i+q̈n,i]

+ J̇ i
l,rq̇i

By folding (18) and (20) in (17), the term ḟ becomes

ḟ = λ1s̈r + λ2 (21)

where the expressions of λ1 and λ2 ∈ IR are






λ1 = (βT
1 γ1)

∂α2

∂ḋil,r

λ2 = (βT
1 γ2 + β2)

∂α2

∂ḋil,r
+

(

∂α1

∂dil,r
+

∂α2

∂dil,r

)

ḋil,r

Therefore, in virtue of (14),(15) and (21), it finally holds

Ḟ i = µi
1 s̈r + µi

2

with µi
1, µ

i
2 ∈ IR defined as below







µi
1 =

ni

l
+1
∑

j=1

∫ 1

0

λ1(p
i
l,r, ṗ

i
l,r,po, ṗo, qi, q̇i, sr) dr

µi
2 =

ni

l
+1
∑

j=1

∫ 1

0

λ2(p
i
l,r, ṗ

i
l,r,po, ṗo, p̈o, qi, q̇i, q̈n,i, sr, ṡr) dr

where the dependencies of λ1 and λ2 on their parameters
are now made explicit for the sake of completeness.
This completes the proof. �

In the multi-robot case, the overall safety function F (and
its derivative), which accounts for all the worker robots in
the team, can be easily deduced by combining the safety
functions in (15) associated to each manipulator

F =
N∑

i=1

F i, Ḟ =
N∑

i=1

Ḟ i (22)

We are now ready to formally state the following problem.
Problem 1. Let us consider a multi-robot system com-
posed by N mobile manipulators performing the cooper-
ative task defined as in (8) for which a desired trajectory
σn(sn(t)) parametrized with respect to a scalar function
sn(t) is assigned. Moreover, let us also assume that a min-
imum value Fmin for function F in (22) is assigned; then,
our objective is to properly scale σn(t) = σn(sn(t)) so as
to generate a new reference trajectory σr(t) = σn(sr(t))
such as F ≥ Fmin, ∀t.
Remark 1. Problem 1 requires that a minimum value Fmin

for function F is defined; thus, the problem arises on how
to choose this lower bound. A first strategy consists in
tuning Fmin via experimental trials based on the human
feeling about the experienced level of safety resorting
to techniques similar to Acharya et al. (2006). Another
strategy consists in selecting Fmin such as, defined d as
the distance between the human operator and the team

d = min
∀i, l, r

‖pi
l,r − po‖ (23)

F ≥ Fmin ensures that d ≥ dmin for some value
dmin > 0 (Lacevic et al. (2013)). As an example, the sec-
ond strategy is pursued in the Section 5.

The next section provides a possible solution to Problem 1.

4. THE HUMAN-ROBOT AVOIDANCE STRATEGY

An overview of the devised strategy for solving Problem 1
is provided in Figure 1; in particular, the proposed ap-
proach foresees tracking the nominal trajectory until the
level of human safety is above the minimum accepted
value, i.e. F > Fmin; if the nominal trajectory leads
the safety level to its minimum value, then a velocity
modulation is applied while preserving the nominal path
and, if this is not enough to guarantee F ≥ Fmin, then
the requirement of preserving the path is relaxed. It is
worth remarking that, in the case of redundant robots,
each manipulator also exploits the extra degrees of freedom
to maximize the cumulative safety index.

Nominal trajectory
tracking (F > Fmin)

Scaled trajectory
tracking

Path deformation

Trajectory scaling

(F = Fmin)

Recovery of the
nominal trajectory

Constraint violation
(F < Fmin)

Recovery of the
nominal trajectory

Fig. 1. High-level scheme of the human avoidance strategy;
transition conditions are detailed in Section 4.

4.1 Human-robot avoidance via trajectory scaling

By leveraging the approach in Dahl and Nielsen (1990)
designed for torque-limited path following of industrial
robots, a scaling parameter sr(t) is introduced that is
function of sn(t) according to the following relation







sr(t) = sn(t) +∆s(t)

ṡr(t) = ṡn(t) + ∆̇s(t)

s̈r(t) = s̈n(t) + ∆̈s(t)

(24)

where ∆s(t) (∆̇s, ∆̈s) might be either negative or posi-
tive and is adopted to properly scale the nominal path
parameter while it is such as ∆s(t) = ∆̇s(t) = ∆̈s(t) = 0
(i.e., sn(t) = sr(t)) in nominal conditions (no safety issue
arises). Moreover, it is required that at any instant

∆̇s(t) ≥ −ṡn(t) (25)

sn(t) +∆s(t) ≤ sn(tf ) (26)

The constraints (25) and (26) ensure that no reverse
motion occurs along the path and that the end-point of
the nominal trajectory is not overcome, respectively.
By folding (16) in (22), the expression of Ḟ can be stated
as follows

Ḟ = µ1∆̈s+ µ2 (27)
with µ1, µ2 ∈ IR defined as







µ1 =

N∑

i=1

µi
1

µ2 = s̈n

N∑

i=1

µi
1 +

N∑

i=1

µi
2



and which is linear in ∆̈s. At this point, we are ready to
determine the scaling terms ∆s, ∆̇s and ∆̈s such that the
minimum safety condition is met. Therefore, starting from
the constraint F ≥ Fmin, the lower (∆̈smin) and the upper

(∆̈smax) bounds on the parameter ∆̈s are computed as

∆̈smax =

{

−µ2/µ1, µ1 < 0 ∧ F = Fmin

+∞, otherwise (28)

and

∆̈smin =

{

−µ2/µ1, µ1 > 0 ∧ F = Fmin

−∞, otherwise (29)

The ratio behind (28) and (29) is that, as long as F >

Fmin, no constraint on Ḟ (and then on ∆̈smin and ∆̈smax)
is set; while, in the case F = Fmin, the computed bounds
are such as ∆̈smin ≤ ∆̈s ≤ ∆̈smax ensures that Ḟ ≥ 0
and, then, that F does no fall below Fmin.
The derived bounds in (28) and (29) are used within the

following dynamic system to compute ∆̈s:
{

∆̈s = −kd∆̇s− kp∆s

∆̈s = sat(∆̈s, ∆̈smin, ∆̈smax)
(30)

where ∆s(t0) = ∆̇s(t0) = 0, kd and kp are positive
constants and sat() is any saturation function that bounds

∆̈s in the range [∆̈smin, ∆̈smax]. The first equation in (30)
is such as to continuously bring ∆s to zero (i.e., sr to
sn), while, in the second equation, this value is saturated
according to the computed bounds. Thus, when the satu-
ration function does not alter the input value, the scaling
term ∆s (∆̇s, ∆̈s) asymptotically converges to zero.
Remark 2. Constraints in (25) and (26) imply that the
scaling strategy does not generally guarantee the condition
F ≥ Fmin to be fulfilled. For example, in the case ∆̇s =
−ṡn and ∆̈smax < 0, it is evident that further scaling
would violate the constraint in (25).

Because of Remark 2, a different avoidance strategy is
presented in the following section which is adopted when
the condition F ≥ Fmin cannot be secured by the scaling
strategy presented above and that, in brief, allows the path
constraint to be violated (see Figure 1).

4.2 Human-robot avoidance via nominal path deformation

In the case the dynamics in (30) leads to one of the
constraints (25) and (26) being violated, the cooperative
task is aborted and other avoidance strategies need to
be adopted. To this aim, two cases should be considered:
loosely connected robots and tightly connected robots (as
in a multi-robot transportation task of rigid objects). In
the first case, once the task has been aborted, the human
safety can be guaranteed independently by each robot
adopting, for example, the approach devised in Lacevic
et al. (2013). Therefore, this case is not investigated in this
paper. In the more interesting case of tightly connected
robots, the avoidance strategy needs to be compliant
with the kinematic constraint that consists in having σ2
constant in any reference frame attached to the grasped
object. For this reason, the avoidance strategy must consist
in properly modifying σ1 and, as in the previous case,
exploiting the local redundancy. In detail, let ts be the
time instant in which the path constraint is relaxed, then
the reference trajectory is modified as







σr(t) = σr(t
−
s ) +∆σr(t)

σ̇r(t) = ∆σ̇r(t)

σ̈r(t) = ∆σ̈r(t)

(31)

where the displacement ∆σr(t) is computed according to
the following dynamics







M∆̈σr(t) +D∆̇σr(t) +K∆σr(t) = fr(t)

∆σr(ts) = 0m

∆̇σr(ts) = σ̇r(t
−
s )

(32)

with M , D, K ∈ IRm×m positive definite matrices and
fr ∈ IRm a virtual force to be properly defined; the
initial conditions in (32) are such that to guarantee the
continuity of the reference trajectory in the switching time
ts. Regarding the virtual force in (32), it is selected as

fr =

[

−kr fr(F )
∇FT

‖∇F‖
0T
m−3

]T

(33)

where kr is a positive gain, ∇F ∈ IR3 is the gradient of the
cumulative safety function with respect to po and fr(F ) is
a monotonically non increasing function of the safety index
F which converges to the origin for F sufficiently high, i.e.
F > Fmin + ∆F with ∆F ∈ IR+. Thus, the repulsive
force is such to modify the reference centroid position
with an intensity that increases when the safety value
decreases and is zero when safety is restored; concerning
the direction, it is opposite to that of the gradient∇F since
it represents the direction in which the operator should
move to maximise F . A possible choice of fr(F ) is shown
in Figure 2.

F

f r

Fmin Fmin +∆F
0

1

Fig. 2. Value of the intensity fr(F ) in (33).

Finally, when the following conditions are met:

(1) fr = 0m, i.e. repulsive forces are no longer required

(2) ∆σr(t) = ∆̇σr(t) = 0m, i.e. the transient vanished

the cooperative task can be restored (see Figure 1) starting
from the condition σr = σr(ts).

5. SIMULATION CASE STUDY

In this simulation case study, a setup composed of N = 3
mobile arms is considered and is depicted in Figure 3. In
detail, each worker robot is a Comau Smart Six (6-DOFs)
mounted on holonomic mobile base in order to move in
the xy plane (2-DOFs); the team’s goal is to cooperatively
transport loads from the picking conveyor belts on the
left of the cell to the deposit one on the right. Such a
task can be easily formulated by means of absolute and
relative task variables introduced in (8) where the former
are appropriate for expressing the position and orientation
of the grasped object, while the latter for expressing robots
formation. Simulation results are provided in the video
available at the following link 3 .
Moreover, in order to asses the level of human safety, the
coefficients of f in (12) are chosen in compliance with
Properties 1 and 2 as

{
α1(d) = k1d

α2(ḋ) = k2 tanh(ḋ)
(34)

3 www.automatica.unisa.it/video/CoopHumanSafetySYROCO.mp4



Wo1

Wo2

Wo3

BS1

BS2

PS1

PS2

DS

Σw

Fig. 3. Cell configuration composed by 3 workers (Woi, i =
1, 2, 3), load picking and depositing stations (PSi, i =
1, 2 and DS, respectively) and base stations for oper-
ators (BSi, i = 1, 2); Σw is the world reference frame.

with k1, k2 ∈ IR+, leading to

f(p, ṗ,po, ṗo) = k1d+ k2 tanh(ḋ) (35)

where po is selected as the chest position of the human
operator. The ratio behind the expression of function f is
that it is a combination of a linear term with respect to
the distance d and a monotonically increasing term with
respect to the derivative ḋ whose contribution to the safety
f is negative when distance is decreasing (ḋ < 0) and

positive for increasing values (ḋ > 0). Starting from the
expression of f in (35), F i (i = 1, 2, 3) and F in (22)
are computed according to the procedure in Section 3.
The computation of the value Fmin such that to ensure
d ≥ dmin in Remark 1 is shown in the Appendix for
the selected safety function in (35). Moreover, due to the
redundancy of the robots at hand, i.e. ni = 8 and p = 6,
the vector of joint accelerations q̈n,i in (9) can be locally

exploited to maximize the i th safety index F i. To this aim,
the acceleration vector is designed as in Hsu et al. (1988),
which is standard for second order kinematics, while the
desired velocity to be projected in the null space of J i

is computed with a gradient technique accordingly to the
procedure in Lacevic et al. (2013).
The following gains are selected for the virtual input in (9),
kσ = 20, λσ = 100, while the following ones for the avoid-
ance strategy, kd = 4.5, kp = 5, M = I18, D = 6.5I18,
K = 10I18 kr = 15, ∆F = 15 in equations (30), (32) and
(33), respectively; finally, the minimum cumulative safety
value is set as Fmin = 80.
Figure 4 shows key snapshots of the simulation while
detailed results are presented in Figures 5-7. In the sim-
ulation study, human behaviour mainly interferes in two
phases with the robots task leading once to modify the
nominal trajectory via velocity scaling and once via path
deformation. In detail, the scaling phase (from t = 8.7 s up
to t = 20 s) occurs when the robots move towards the oper-
ator standing at the first base station (Figure 4.b), while
the impedance phase (from t = 39.2 s up to t = 45.1 s)
occurs when the operator crosses the robots nominal path
and the scaling trajectory is no longer sufficient for ensur-
ing minimum safety (Figure 4.c).

Figure 5 shows the progress of the safety index during the
human-robot interaction; in particular, it makes evident
that, during the scaling phase (S), the safety value is
almost saturated at its minimum value while an increase
of it is detected at the beginning of the impedance phase
(I) due to the path constraint relaxation.

Concerning the scaling strategy, Figure 6 shows how the
scaling parameters vary over time; in particular, scaling
phase is firstly characterized by a decrease of ∆̇s, i.e. a
slowdown of nominal trajectory, and then an increase of

a) b) c)

Fig. 4. Simulation snapshots representing the initial sys-
tem configuration (a), the scaling phase (b) and the
impedance phase (c), respectively.

time [s]

F
Fmin

S I

0 10 20 30 40 50 60

100

200

300

Fig. 5. Evolution of the cumulative safety function (in
blue) with respect to its minimum allowed value (in
red); scaling and impedance phases are marked with
S and I, respectively.

it in order to restore nominal trajectory tracking ( i.e.

the condition ∆̈s = ∆̇s = ∆s = 0). This effect is also
evident from Figure 7 where the centroid position of the
nominal trajectory is compared to that of the reference
one. Moreover, Figure 7 shows how trajectory is modified
when path constraint is relaxed; in this case, starting from
σr(ts = 39.2 s) the reference trajectory evolves according
to the impedance model in (32) and then, when repulsive
action is no longer necessary, it returns again to σr(ts) in
order to restore the tracking of the nominal trajectory.
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Fig. 6. Evolution of scaling terms; scaling and impedance
phases are marked with S and I, respectively. In
the impedance phase, no plots are provided since the
nominal path is abandoned.

6. CONCLUSIONS

In this work, a general approach to achieve cooperative
tasks by multi-robot systems in coexistence with human
operators was presented. To this aim, the human-robot
safe interaction is first assessed by the definition of a
general safety index and, then, a strategy capable of
ensuring a safe human-robot interaction is defined. At the
same time, this strategy is such as to preserve as much as
possible the desired cooperative task and, only in the case
the human safety cannot be longer ensured, the task is
aborted and a suitable avoidance strategy is undertaken.
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Fig. 7. Evolution of the nominal (n, in red) and reference
(r, in blue) trajectories of the team centroid position;
scaling and impedance phases are marked with S
and I, respectively. In the impedance phase, nominal
trajectory is not shown since its tracking is aborted.

As future work, the approach will be extended to cope with
a decentralized architecture and will be validated through
experiments on a real setup.

APPENDIX

For a given value dmin of d in (23), the objective is to
compute Fmin such as F ≥ Fmin implies d ≥ dmin. For
this purpose, let us first consider the case of a single nl

link manipulator. The required Fmin can be computed as
the maximum value of F for all po such as d = dmin

F =

nl∑

l=1

∫ 1

0

(

k1dl,r + k2 tanh(ḋl,r)
)

dr

≤

nl∑

l=1

(

k1

∫ 1

0

‖pl,0 + r(pl,1 − pl,0)− po‖ dr + k2

)

≤ k1

(

1

2

nl∑

l=1

Ll +

nl∑

l=1

‖pl,0 − po‖

)

+ k2 nl

(A.1)
where Ll is the length of the l th link. Let p⋆ be the generic
point on the robot structure at distance dmin from po, i.e.,
‖po − p⋆‖ = dmin, then the following inequalities holds

‖pl,0 − po ± p⋆‖ ≤ ‖pl,0 − p⋆‖+ ‖po − p⋆‖

≤

nl∑

l=1

Ll + dmin = L+ dmin
(A.2)

where L =
∑nl

l=1 Ll and the obvious relation ‖pl,0 −
p⋆‖ ≤ L has been exploited. Hence, in virtue of (A.1)
and (A.2), it follows that for single robot

Fmin = k1

(
2nl + 1

2
L+ nl dmin

)

+ k2 nl

By generalizing to the case of N robots, it holds

F ≤

N∑

i=1



k1




1

2
Li +

ni

l
+1
∑

l=1

‖pi
l,0 − po‖



+ k2 (n
i
l + 1)





(A.3)

where Li =
∑ni

l
+1

l=1 Li
l also takes into account the virtual

link to the team centroid. Moreover, since the robots are
assumed to be in formation, the structure composed by the
i th manipulator and the one at minimum distance dmin

can be analysed in turn as an “aggregate” manipulator

whose maximum sum of link lengths is Li + Lmax with
Lmax = maxi∈1,..,N Li; therefore, it holds

‖pi
l,0 − po‖ ≤ Li + Lmax + dmin (A.4)

From (A.3) and (A.4), it follows that

Fmin=
N∑

i=1

[k1

(
2ni

l + 3

2
Li+(ni

l + 1)(Lmax + dmin)

)

+k2 (n
i
l + 1)]

is such to ensure that each point on each manipulator is
at least at distance dmin from the operator.
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Abstract—This paper presents the Smart Inspection Tools 
developed for the robotic cell designed for fuselage panels 
manufacturing, in the LABOR project. This project has the 
objective to develop a small size, low-cost automatic cell for the 
drilling, fastening, sealing and inspection of fuselage panels for 
regional aircraft. This paper focuses on the development of the 
two Smart Inspection Tools used for referencing the robot with 
respect to the panel geometry and to check the quality of the 
manufactured holes. Different inspection technologies have 
been exploited to guarantee the strict project specifications. The 
paper presents the design of the developed tool and shows the 
experimental results of a prototypal versions. 

Keywords—Inspection tool, Vision system, Robotized Aircraft 
manufacturing, Countersink hole inspection, Fastener inspection 

I. INTRODUCTION 

One of the most important challenges for the next aircraft 
assembly lines is the increase in the level of automation. There 
are several reasons to pursue such an objective as the high-
quality standards allowed by automatized solutions or the high 
production rates and flexibility. These features are more and 
more important since aerospace production volumes have 
been increasing steadily over the last three years. For instance, 
Boeing Commercial Airplanes built more than 700 airliners in 
2014 while about 650 in 2013 and 600 in 2012. Furthermore, 
the annual report by Airbus (year 2016) reveals a long backlog 
of 6.847 aircraft, with only 688 commercial aircraft delivered, 
representing about 10 years of production at current rates. 
Airbus projects a need for about 35,000 new passenger aircraft 
– valued at US$5.3 trillion – over the next 20 years, based on 
its latest Global Market Forecast (GMF): “Growing Horizons” 
[1]. Overall, the total worldwide fleet of passenger and 
freighter aircraft will double by 2036 – with an estimated 
requirement for 24.810 new single-aisle aircraft, 8.690 new 
twin-aisle wide-bodies and 1.410 new very large aircraft [1]. 
For this reason, main aeronautic manufacturers are heavily 
investing in flexible systems to reduce costs, improve quality 
and boost productivity, mainly by adopting robots, Automated 
Guided Vehicles (AGV) and other technologies. Drilling, 
fastener insertion, riveting, sealing, coating and painting 
applications, in addition to material handling, are the most 
recurrent operations in aircraft assembly lines. The majority 
of these operations are performed by machines and big robots, 
i.e., high-cost rigid solutions [2-5], but still a high number of 
the drilling and riveting operations are performed by the 
operators. Therefore, it is clear that the automation of such 
operations would lead to great and immediate benefits to 
aircraft industry in terms of production rate. However, mainly 
because of safety motivations and government regulations, 
hard constraints are requested to be met, especially concerning 
the process tolerances.  

The LABOR project [6] will approach the problem with a 
new concept based on Self-Adaptive Robotic Cell that 
combines: 

• small/medium size robots to provide higher capability 
of adaptation and easy integration in shop floor already 
existing facilities as shown in [7-9],  

• adaptive processing tools in order to perform in an 
automatic and adaptive way the different processing 
tasks,  

• advanced vision systems in order to reference the 
robots and check the quality of the work performed, 
and distributed intelligence in order to build a more 
flexible solution. 

In the aircraft manufacturing process, the state of the art for 
the inspection of holes and fasteners relies on manual 
mechanical instruments. Each measurement has its own 
gauge: height/depth gauge, chamfer gauge, grip length gauge, 
gap gauge, shape gage and many others that guarantee the 
required measurement accuracy. A first approach toward 
measurement automation can be the use of such probes on a 
robotic arm. However, the use of contact measurement system 
on the robot, as presented in [10], is not effective due to the 
difficult integration of manual probes on an automatic system 
and due to the reduced robot accuracy. A better approach is 
represented by non-contact measurement systems which 
allow a better integration on robot wrist, especially as regard 
vision measurement techniques. The measurement is usually 
performed in different positions to cover undercut, thus 
requiring the use of a robot to perform the task. High accuracy 
instrumentation is bulky and not really suitable to be 
integrated in a fast tool changer as in [11-12]. Better results 
can be obtained with non-contact inspection probes as 
represented in [13-15]. These solutions guarantee high 
accuracy but they are very expensive and not so rugged to be 
safely installed on an automatic process in an industrial 
environment. The most suitable solutions are thus represented 
by vision non-contact inspection techniques based on the use 
of 2D cameras and lighting systems as in [16-17]. However, 
solutions found in the state of art have still some limits 
because does not guarantee the required accuracy or they are 
focused on a specific and particular measurement losing in 
generality. The same limits have been found among 
commercial solutions. For example, [18] has tried to 
overcome these limitations by developing a series of 
instruments dedicated to online surface measurements for the 
aeronautic sector, but their line-up is limited to dent and rivet 
flushness measurement. For a complete measurement set, [19] 
has presented an instrument for diameter, countersink 
diameter, countersink depth, grip length and perpendicular 
measurement but this tool is designed to be hand held and 
cannot perform referencing tasks.  



In conclusion, the constraints in the present applications 
impose a design for a tool specifically developed for the 
integration in an automatic process and suitable to be mounted 
on a robotic arm. 

In this contest, the LABOR Smart Inspection Tools have been 
developed, with the aim of reducing costs, weights, and 
dimensions according to the small-scale robot integration but 
respecting at the same time the strict requirements of the 
aeronautical sector. In the following paragraphs firstly the 
specifications for the Smart Inspection Tools will be 
summarized. Then, the proposed inspection techniques will be 
presented and the developed tools will be described. Finally, 
experimental results conducted with Smart Inspection Tools 
prototypes will be presented and discussed. 

II. PROJECT REQUIREMENTS 

The panels that must be manufactured in the LABOR 
robotic cell are composed of a CFRP skin with frames and 
shear ties temporarily glued on the skin. The LABOR robotic 
cell must drill and fastener holes on the outer panel surface to 
obtain a definitive coupling. The Smart Inspection Tools 
developed in the LABOR project have three main objectives: 

• O1: scan from the internal side of the panel the 
geometry of the substructure (frames and shear ties) 
in order to reposition and align the robot before 
drilling; 

• O2: check the quality of the drilled holes in terms of 
absence of delamination (or burrs in case of metals) 
occurring at the joint interfaces or at the exit of the 
hole, the hole diameter, and countersink; 

• O3: check the quality of the installed fasteners in 
terms of flushness and sleeve diameter and height. 

In Fig. 1 the countersink hole parameters are highlighted and 
the fastener main components are depicted. In Fig. 2, Fig. 3 
and Fig. 4 the fastener installations parameters are described. 
According to the project specifications, maximum acceptable 
limits for the parameters described above are summarized in 
TABLE I. 
 

 
Fig. 1. Holes parameters and fasteners components 

 
Fig. 2. Fastener Stem installation limits 

 
Fig. 3. Fastener Collar installation limits 

 
Fig. 4. Fastener Sleeve and Flushness installation limits 

 
TABLE I. Hole dimensions and fastener installation parameter according to 

LABOR project specifications 

Parameter Value 

Hole position tolerance ±0.2 mm 

Hole diameter tollerance (D) [0 - 0.076] mm 

Countersink diameter tolerance (C) ±0.0635 mm 

Flushness tolerance (f) ±0.203 mm 

Maximum Sleeve height (S Max) 5.9 mm 

Minimum Sleeve diameter (X Min) 5.7 mm 

Stem protrusion limits (C) ±0.254 

Collar protrusion limits (A) ±0.4318 

  



III. METHODOLOGY 

The different required measurements are performed with two 
Smart Inspection Tools mainly for geometrical and weight 
constraints. The small/medium size robot has a limited 
payload, thus two smaller and lighter tools have been 
preferred with respect to a single bigger tool. Each tool 
exploits a different inspection technique and guarantees the 
required measurement performances as specified in [20]. 
The first tool (represented in Fig. 5) uses a 2D camera for 
measuring the hole diameter and the countersink diameter 
(O2). 
The tool is composed of the following parts: 

• One Camera 

• Telecentric Lens 

• Diffusive ring light (blue 450nm) 

• A band-pass filter centered on 450nm 

Several lighting solutions with different wavelength have 
been tested mainly because the reflection of the CFRP 
countersink hole creates problems for a correct measurement 
of both diameters (hole and countersink). Spotlights due to a 
direct reflection of light source on the camera sensor cause 
the saturation of the image and reduce the quality of the 
diameter measurement. Thus, a different technique has been 
proposed based on a diffusive blue (450nm) ring light that 
significantly reduces the reflection thanks to a diffuser and a 
different incident light angle. The internal and external 
diameters are then measured through an edge detection 
analysis (Fig. 6). The measurement algorithm automatically 
finds the hole within the image, compares the measured 
diameters with the nominal tolerance defined in TABLE I and 
assess if the drilled hole can be accepted, otherwise requires 
the operator attendance. Finally, the 2D Smart Inspection 
Tool is mounted on an electric linear axis that allows 
adjusting the camera focus. Indeed, the robot position error 
can, affects the distance between the camera and the panel, 
thus causing errors in the diameter measurements. To correct 
this issue, autofocus techniques can be tested in order to 
adjust the camera distance by moving the linear axis and then 
improving the measuring accuracy. 

 
Fig. 5. 2D Smart Inspection Tool 

The second Smart Inspection Tool is represented in Fig. 7; it 
measures the correct installation of the fastener and scans the 
internal panel surface for robot reference (O1 and O3). It 

consists of a profilometer composed of a structured LED light 
pattern projector and two cameras to avoid undercuts [21]. 
 

 
Fig. 6. Image acquired (left); Image elaboration (right) 

The tool is composed of the following parts: 
• Two cameras 

• 35mm Lens 

• A structured LED light pattern projector. 

 
Fig. 7. 3D Smart Inspection Tool 

The structured LED light projects on the target a 10μm width 
line. The use of a blue LED source instead of a laser reduces 
speckle and increases accuracy. The two cameras extract the 
profiles (left and right) to ensure a complete view of the target 
even in case of one camera has undercut or occlusions. The 
3D Smart Inspection Tool is mounted on an electric linear 
axis that allows translating the tool on a direction 
perpendicular to the projected line.  At regular intervals, the 
tool extracts two profiles like the one represented in Fig. 8. 
All the profiles are then combined together allowing a 3D 
reconstruction (point cloud) of the scanned object (Fig. 9). 
Finally, the left and right point clouds (extract from the left 
and right cameras) are merged to obtain a complete 
reconstruction of the target object. The obtained point cloud 
contains a great number of information that can be elaborated 
to extract the required measurement by interpolating 
geometrical entities.  
The proposed approach allows to increase the tool flexibility, 
the design is not specific for a particular measurement and 
several quantities can be extracted by analyzing the point 
cloud. In detail, for the purposes of the LABOR project, the 
3D Smart Inspection Tool can be used to measure all the 



required quantities on the fastener head and sleeve and to 
reconstruct the geometry of the internal panel surface. 

 
Fig. 8. Extracted profile 

 
 

Fig. 9. Reconstructed 3D point cloud 

The proposed Smart Inspection Tools, both for 2D and 3D 
inspection, satisfy the project requirements: small 
dimensions, lightweight, accurate measurements, and 
flexibility. In the following paragraph, a preliminary test on 
tool prototypes will be presented, 

IV. RESULTS 

In this paragraph, preliminary results of the measurements 
conducted with the Smart Inspection Tools prototypes are 
presented. In Fig. 10 a correct and incorrect installed fastener 
are represented for both the fastener head and sleeve. In Fig. 
11 examples of extracted profiles are presented, while in Fig. 
12 the point clouds of a corrected and uncorrected installer 
fastener head are compared. 
 

 

 
Fig. 10. Correct installed and defected fastener head and sleeve 

 

 

 
 

Fig. 11. Correct installed and defected fastener head and sleeve (profile) 

 
Fig. 12. Correct installed and defected fastener head (point cloud) 

The profiles can thus be elaborated to extract the geometrical 
features that must be measured in the LABOR project as 
represented in Fig. 13. 
 
 

 
Fig. 13. Example of geometrical feature extraction on a corrected installed 

and defected fastener sleeve 

Finally, a validation of the 2D Smart Inspection Tool 
measurement is given. A sample with four countersink hole 
has been prepared. Some defects and irregularities on the hole 
edge were present in order to test the Inspection Tool 
measurement algorithm robustness. The sample is presented 
in Fig. 14. 

 
Fig. 14. Countersink hole sample 



Each hole has been measured with the 2D Smart Inspection 
Tool (50 times) and with a CMM (coordinate measuring 
machine) “ZEISS O-INSPECT” as reference. In Fig. 15 and 
Fig. 16 results are shown for the internal and external 
diameters of each hole. 
 

 
Fig. 15. Internal hole diameter measured with 2D Smart Inspection Tool 

 

 
Fig. 16. External countersink hole diameter measured with 2D Smart 

Inspection Tool 

Data has been analyzed and results are shown in TABLE II. 
For each hole, for both internal and external diameters, the 
measurement repeatability has been calculated and also the 
maximum deviation between the mean value and the true 
value from the CMM machine is given. Finally, the 
maximum repeatability values for all four holes are shown.   

 
 
 

TABLE II. 2D Smart Inspection Tool Repeatability 

TRUE VALUE from ZEISS O-INSPECT  
[mm] 

Hole 1 Hole 2 Hole 3 Hole 4 
INT EXT INT EXT INT EXT INT EXT 

5.1139 10.258 5.1105 10.251 5.127 10.257 5.1178 10.255  

TRUE VALUE - MEAN VALUE  
[mm] 

Hole 1 Hole 2 Hole 3 Hole 4 
INT EXT INT EXT INT EXT INT EXT 

-0.042 0.0252 -0.033 0.0295 0.038 0.0431 -0.047 0.0536 
 

REPEATABILITY (MAX VALUE - MIN VALUE) 
[mm] 

Hole 1 Hole 2 Hole 3 Hole 4 
INT EXT INT EXT INT EXT INT EXT 

0.02 0.004 0.007 0.004 0.046 0.012 0.006 0.02 
 

MAX. REPEATABILITY INTERNAL DIAM. 
[mm] 

0.046 

MAX. REPEATABILITY EXTERNAL DIAM. 
[mm] 

0.02 

 
The results show, globally, good values for repeatability, 
better for the external diameter rather than the internal one. 
Data also show an offset between true values and measured 
values. The main reason for this offset can be a not precise 
alignment between the optical axis and the perpendicular of 
the target surface. This issues will be solved in the final 
system setup because the 2D Inspection Tool will be installed 
on the robot wrist that will be equipped with a normality 
sensor that will check and correct the correct orientation of 
the Inspection Tool prior to performing the measurement. 
 
In Fig. 17 and Fig. 18 the measurements obtained with the 3D 
smart Inspection Tool are reported. A sample of four installed 
fasteners (Fig. 19) has been measured 50 times and, for each 
measurement, the mean value and the standard deviation have 
been evaluated. The graphs reports, for each quantity, the 
maximum admissible value (in red) according to LABOR 
requirements (refer to TABLE I), the mean value and the 
standard deviation (in black). The five quantities evaluated 
are flushness (a), collar protrusion (b), stem protrusion (c), 
sleeve height (d) and sleeve diameter (e). 
 

 
Fig. 17. 3D Smart Inspection Tool measurement results (1/2) 



 
Fig. 18. 3D Smart Inspection Tool measurement results (2/2) 

 
Fig. 19. Sample of installed fasteners 

Also for the 3D Smart Inspection Tool, the results are positive 
and show that the proposed solution satisfies the project 
requirements. The obtained error is compatible with the 
required measurement accuracy. A detailed characterization 
of the proposed equipment will be presented in future works. 
 

V. CONCLUSIONS 

The Smart Inspection Tools presented in this paper satisfy the 
inspection requirements of the LABOR project and more in 
general the requirements usually applied in the aeronautical 
sector. Moreover, small dimensions and lightweight design 
have been guaranteed in order to mount the tools on 
small/medium scale robots. This is an important objective in 
order to pursue the automatization trend of the growing 
aircraft industry. In the followings, both tools will be installed 
on the LABOR robotic cell and thus performance on the real 
system will be tested and validated. 
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Abstract: Nowadays, human-robot collaboration (HRC) is an important topic in the industrial sector. According to the
current regulations, the robot no longer needs to be isolated in a work cell, but a collaborative workspace in
which human operators and robots coexist can be acceptable. Human-robot interaction (HRI) is made possible
by proper design of the robot and by using advanced sensors with high accuracy, which are adopted to monitor
collaborative operations to ensure the human safety. Goal of this article is to implement a fuzzy inference
system, based on the ISO/TS 15066, to correctly compute the minimum protective separation distance and
adjust the robot speed by considering different possible situations, with the aim to avoid any collisions between
operators and robots trying to minimize cycle time as well.

1

1 INTRODUCTION

The research paper tackles the human-robot collab-
oration problem by following the line of the current
regulations and introducing a new approach to be used
in manufacturing industry. The novel method assures
human operators safety, without modifying the robot
predefined path and defining a safety metric to scale
robot trajectory only when indispensable, thus trying
to maximize the production time.

The research work is carried out in the framework
of a European project (The LABOR project, 2019),
which has the objective to propose novel robotized
assembly paradigms of aircraft fuselage panels. Un-
til recently, the aerospace industry was still conserva-
tive and companies tended to use successful assem-
bly methods that had already been proven to work in
the past. Nowadays, many assembly sub-operations
try to exploit robotics, e.g., drilling, fastening and
sealing tasks. These operations are no longer man-
ually performed by human operators but by industrial
robots equipped with dedicated tools or by large au-
tomated machines dedicated to assembly of specific
parts. However, there are some detailed operations

1 c©2019 Scitepress. Presented @ICINCO 2019. DOI:
http://dx.doi.org/10.5220/0007838700780087

which require human capabilities and that must be
still executed by operators. This is the case of hy-
brid metal and composite structures, where, after the
drilling operation, some parts have to be manually re-
moved for further manual operations, like deburring,
and then re-installed on the skin panel before the seal-
ing and riveting operations, as shown in Figure 1.

This requires to setup a robotic cell that has to
foresee the presence of a human operator, hence the
necessity to monitor the shared workspace. Real-time
workspace monitoring for human-robot coexistence is
not an easy problem to solve. Even more, implement-
ing strategies to maximize the production time and
preserve human safety at the same time is a research
challenge. The approach proposed here is to adopt
a fuzzy inference logic that can update the planned
robot velocity in real-time according to robust per-
ception data and a set of rules formulated based on
a risk analysis. This can lead to a novel, acceptable
solution.

Ensuring the safety of a human operator is the
main purpose of the current research of industrial col-
laborative robotics. The safety standards for appli-
cations of industrial robots are laid out by the Inter-
national Organization for Standardization (ISO) (ISO
10218-1, 2011), (ISO 10218-2, 2011), and by the up-
coming ISO proposed draft Technical Specification
(TS) (ISO/TS 15066, 2016), which addresses four
collaborative scenarios:
1. Safety-rated Monitored Stop (SMS), which re-



quires that the robot stops when a human is in the
collaborative workspace;

2. Hand Guiding (HG), which allows the operator
to hand-guide the robot through an hand guiding
equipment (e.g., an analog button cell attached to
the robot) and an emergency stop conforming to
International Electrical Commission (IEC) (IEC
60204-1, 2009);

3. Speed and Separation Monitoring (SSM), which
monitors the robot speed according to the separa-
tion distance from the operator;

4. Power and Force Limiting (PFL), which limits the
momentum of the robot such that the potential
for operator injury upon impact is minimized, ac-
cording to the established injury standards (Bicchi
et al., 2008).
In this paper, a strategy to handle the operators

safety in industrial SSM scenarios is investigated.
The main goal is to reasonably scale down the size
of the protective zone around the robot and improve
productivity, taking into account safety regulations.
The robot behavior is modified, in terms of trajec-
tory scaling, only if there is a real and imminent
risk of collision. The operator approach into the col-
laborative workspace is deeply analyzed to general-
ize the computing method of the safety index and
face the extreme variability and unpredictability of
human behaviours. The devised solution computes
the points at minimum distance between the robot
and the closest human and presents several desir-
able features with respect to other solutions, e.g.,
(Zhang et al., 2016),(Bascetta et al., 2011),(Lippi and
Marino, 2018),(Bjerkeng et al., 2014); many of these
approaches rely on evasive actions to increase safety.
However, in industrial setting, it is generally recom-
mended to follow the robot predefined path without
deviating from it, especially in complex work cells,
where clashes are likely to occur. The main charac-
teristics of the proposed approach are:
• it considers the whole surface of human opera-

tors, without using skeleton-based techniques and
without approximating the body to a single point;

• it considers the whole robot kinematic chain, the
entire volume and possible tools, without factor-
ing only a singular representative element of the
robot (e.g., the end effector);

• it explicitly takes into account the regulations;

• it predicts the human velocity vH , by estimating
it from perception data without assuming it con-
stant;

• it is based on a risk analysis that considers the rel-
ative directions of velocities, which are not taken

Figure 1: Example of a manual assembly operation where
the operator shares the workspace with a robot.

into account in the equation proposed by the cur-
rent regulations;

• it does not modify the robot programmed path and
it does not require the task to be aborted.

2 ISO ANALYSIS: SSM

SSM allows the robot system and the operator to
move concurrently in the collaborative workspace.
Risk reduction is achieved by maintaining at least the
minimum protective separation distance, S, between
the human operator and the robot all the time. Dur-
ing robot motion, the robot system never gets closer
to the operator than S. When the Euclidean separation
distance, d, is equal to or less than S, the robot system
stops, before it can impact the operator. When the op-
erator moves away from the robot system, the robot
system can resume the motion automatically while
maintaining at least the protective separation distance.

(ISO 13855, 2010) is the first document which in-
vestigates the issue of safeguards positioning for hu-
man safety in stationary, active machinery. The docu-
ment suggests to compute S as

S = vT +C, (1)

where v is the approach speed of human body parts
and its value is assumed to be as the maximum opera-
tor speed of 2.0m/s, unless d is greater than 0.5m, in
which case may be set at 1.6m/s. T is the total sys-
tem stopping performance time, in seconds, and it is
a combination of the time required by the machine to
respond to the operator’s presence (i.e., TR) and the
response time of the machine which brings the robot
to a safe, controlled stop (i.e., TS). C is the intrusion
distance safety margin, which represents an additional
distance, based on the expected intrusion toward the
critical zone prior to the actuation of the protective
equipment.



From eq. (1), ISO/TS 15066 updates the S mean-
ing by including robot dynamic properties. When the
robot system reduces its speed, the protective separa-
tion distance decreases correspondingly, i.e.,

S(t0)≥
∫

τ=t0+TR+TS

τ=t0
vH(τ)dτ+

∫
τ=t0+TR

τ=t0
vR(τ)dτ

+
∫

τ=t0+TR+TS

τ=t0+TR

vS(τ)dτ+(C+ZS +ZR)

(2)

In (2), vH is the “directed speed” of the closest op-
erator which travels toward the robot, vR is the speed
of the robot in the direction of the operator, vS is the
directed speed of the robot in course of stopping. The
remaining terms represents uncertainties: the intru-
sion distance C is based on the operator reach, ZR is
the robot position uncertainty, and ZS is the operator
position uncertainty (i.e., the sensor uncertainty). Fi-
nally, t0 is considered the current time.

The main issue of (ISO 13855, 2010) is that
the separation distance was initially intended for
static machinery, not for dynamic and reconfigurable
robotic systems. Therefore, extending what is con-
tained in the standard to the case of industrial robotics
is not trivial. Nevertheless, ISO/TS 15066 tries to
make a contribution to the HRC problem and de-
scribes S using the linear function

S = (vHTR + vHTS)+(vRTR)+(B)+(C+ZS +ZR)
(3)

where B is the Euclidean distance travelled by the
robot while braking. Note the one-to-one correlation
between eq. (2) and the linear relationship (3). The
first term in parentheses describes the contribution at-
tributable to the operator’s change in location in the
time necessary to bring the robot to a full stop from its
current speed. The second term describes the contri-
bution attributable to the robot system reaction time,
before it initiates the braking sequence. The third
term describes the distance travelled by the robot dur-
ing its braking. Finally, the fourth term describes the
possible distance of intrusion into the robot work vol-
ume as a function of the operator reach and the un-
certainty of the sensory system and robot kinematics.
The values of vH , TS, B and C can be found in the
safety standards: the values of vH and C are given in
ISO 13855, while guidelines for evaluating TS and B
are given in Annex B of ISO 10218-1 and they result
from measurements that directly depend on the robot
system under test.

This paper decomposes and assesses the perfor-
mance of ISO/TS 15066 SSM minimum protective
distance metric and adds a contribution to improve
some aspects to allow its applicability in industrial
scenarios. The following sections widely discuss

four main areas that are directly pertinent to SSM:
human detection and tracking, prediction of human
and robot motions, safety separation maintenance and
robot speed monitoring.

3 HUMAN-ROBOT
INTERACTION

The robot control system must be able to adapt the
robot trajectory to the current observed scene and to
perform its task efficiently and safely. This means
that the control system must be able to detect the
presence of human operators inside the collaborative
workspace, to track the human closest to the machine
and, finally, to modulate the robot speed according to
the minimum protective distance S.

The HRC has been addressed dividing it into
two distinct problems: human detection and tracking
(HDT) and intention estimation (IE).

3.1 Perception System

The experimental set-up of this work is composed by
two depth cameras, which have been used to monitor
the collaborative workspace: a Microsoft Kinect v1
and an Intel RealSense D435 (see Figure 2a). At least
two views become necessary to minimize the occlu-
sions of the observed area, as shown in Figure 2b and
Figure 2c.

An intrinsic calibration is necessary to update
the rough intrinsic default parameters, as well as, a
sphere-tracking procedure has been developed for ex-
trinsic calibration. The obtained homogeneous trans-
formation matrices, T robot

camera1 and T robot
camera2, express the

poses of the camera frames with respect to the robot
base frame.

The goal of the extrinsic calibration is to obtain
an accurate identification of the camera pose, which
guarantees the minimum relative positioning error
when the two camera views are merged.

Therefore, a 3D tracking technique has been de-
veloped by using a polystyrene sphere of 0.12m di-
ameter. The red sphere has been mounted at the
robot end effector, so as to match the center of the
sphere with the origin of the end-effector frame, as
shown in Figure 2. The calibration procedure uses
the M-estimator SAmple Consensus (MSAC) algo-
rithm (Torr and Murray, 1997) (which is an exten-
sion of the best known RANdom SAmple Consensus
(RANSAC) algorithm (Fischler and Bolles, 1981)), to
find a sphere within a radius constraint, and to provide
its geometric model. The robot has been positioned
at specific configurations, which allow to correctly



(a) Perception system.

(b) Kinect RGB view. (c) RealSense RGB view.

Figure 2: Experimental set-up.

distinguish the target within the two camera views.
From the robot joint states, the forward kinematics
computes the pose of the center of the red sphere. At
the same time, the developed procedure acquires the
depth images, converts them into point clouds (Rusu
and Cousins, 2011) and estimates the target model.
The method is iterated to cover the entire collabora-
tive workspace and to minimize the positioning error.
Finally, the transformation matrices have been eval-
uated through an optimization algorithm with a cost
function that combines the data of both cameras.

3.2 Human Detection and Tracking

Realizing a safe HRC application requires a very fast
HDT algorithm, which detects human operators in
real time. In this study, a novel point cloud-based
methodology is presented to compute the minimum
distance between the whole body of the detected op-
erators and a robot. Since this operation is computa-
tionally heavy, a Background Segmentation (BS) al-
gorithm is developed to subtract the static environ-
ment from the observed scene and to process exclu-
sively the information related to the dynamic objects.
The developed pipeline is shown in Figure 3.

The perception system described in Section 3.1
observes the surroundings of the manipulator and the
robot kinematic chain is fully visible. While the
workspace is monitored, the robot executes its task,
thus it becomes a dynamic entity. Therefore, the Re-
altime URDF Filter (Blodow, 2012) is used to remove
the robot from the scene.

Figure 3: Implemented HDT pipeline.

The implementation of the BS step consists of an
efficient algorithm that performs the subtraction of a
stored background, at pixel level: 50 frames of a static
scene in the absence of human workers are initially
captured and the mean value of each pixel is stored in
a memory area. Therefore, the stored frame is sub-
tracted from the current frame at every acquisition.

The algorithm makes use of PCL: the depth in-
formation is converted into Point Cloud Data (PCD)
and a uniform sampling filter can be applied to make
the algorithm more reactive, by decreasing the PCDs
density.

Subsequently, a reference camera has been se-
lected to express the entire output of the perception
system relative to a single camera frame, in this case,
the Kinect camera. The point clouds have been com-
bined through the merging step (MS). The accuracy
reached during the extrinsic calibration procedure, de-
scribed in Section 3.1, allowed to obtain a satisfying
correspondence.

Finally, the clustering process (CP) provides as
many clusters as single dynamic areas are detected



in the foreground. The Euclidean cluster extraction
method is performed to highlight all the human clus-
ters of the collaborative workspace. The bottom right
image of Figure 3 shows three detected human op-
erators, whose shapes are distinguishable by different
colors. To compensate the sensors measurement noise
that could sometimes provide false clusters, the areas
in the foreground should be large enough to represent
a human body. Therefore, a valid cluster should have
a minimum PCD cardinality, empirically determined.

3.3 Human-Robot Separation Distance

The goal of the proposed HRC strategy is to identify
the nearest pair of points, one belonging to the robot
(PR) and the other one belonging to the operator (PH ),
that minimize the distance, i.e.,

PH ∈H ,PR ∈ R | d(PH ,PR)≤ d(P′H ,P
′
R)

∀P′H ∈H ,P′R ∈ R
(4)

where d(·, ·) is the Euclidean distance between two
points, H and R represent the set of all points that
belong to the operator and to the robot, respectively.

Therefore, alongside the HDT strategy, a robot
modeling method has been also implemented. To the
best of authors knowledge, the typical SoA assump-
tion is to consider only a representative elements of
the robot (e.g., the end effector), introducing only an
approximate estimation of the distance between the
operators and the robot kinematic chain. Other so-
lutions report the pose of the robot only in terms of
either joint configurations or in terms of the Carte-
sian pose of the robot link frames, without taking
into account the link shapes but considering only spe-
cific points. On the contrary, the proposed solution
models the entire robot kinematic chain with its vol-
ume. A computationally efficient way to represent
the whole robot is to use primitive shapes, e.g., el-
lipses and spheres (Choi and Kim, 1999). A simi-
lar convention was proposed in (Bosscher and Hed-
man, 2009) . This work is inspired by the same idea,
but pays attention to some aspects: since the robot
links can have different lengths, its kinematic chain
has been padded through dummy frames to protect
the robot homogeneously, and a 0.10m diameter se-
curity sphere has been created around each frame, tak-
ing into account the last frame that can incorporate an
end-effector tool.

Under such assumptions, the pair of human-robot
points that are closest to each other can be immedi-
ately identified. This step strongly justifies the choice
of a point cloud-based pipeline. In fact, the point
cloud provides much more detailed information, ac-
curacy and precision if compared to the major HDT

Figure 4: Identification of the minimum distance points: the
yellow sphere is the robot point closest to the human and the
purple one is the human point closest to the robot.

techniques present in the SoA literature cited in Sec-
tion 1. Unlike common skeleton-based techniques,
the proposed approach allows tracking humans also
when they are carrying objects. Moreover, it is not
necessary that human operators are in front of the
camera view: the point cloud will recognize them
anyway. Furthermore, detecting the pair of human-
robot points at minimum distance (4) is particularly
immediate. The algorithm calculates the distance be-
tween all points of a cluster point cloud and the origin
of every robot frame. Eventually, the robot point PR
will be the one on the surface of the virtual sphere,
around the identified frame, which lies on the line
connecting the origin of this frame and the closest
point in the cluster. From these results, the closest
human cluster is indirectly selected if more than one
human have been detected.

Figure 4 shows the results. Note that the proposed
approach is able to identify more detailed body parts,
e.g., a elbow, the head, an hand, the chin or the chest,
and also that PR can be detected along the whole robot
kinematic chain. Figure 5 demonstrates the effective-
ness of the proposed approach in multi-humans sce-
narios. The results of the experimental tests described
in Section 6 will be used to evaluate the performances
of the algorithm.

3.4 Estimation of Operator and Robot
Velocities

Another fundamental function of the HRC problem is
represented by IE, i.e., the prediction of human move-
ment. From such information, the robot control sys-
tem will select the most appropriate value of its joint



Figure 5: Multi-humans tracking.

speeds to avoid a potentially dangerous situation, as
explained in Section 5.

IE consists in estimating the next position and ve-
locity of the trajectory performed by the operator on
the basis of a series of positions previously acquired.

The sensor fusion strategy that has been integrated
into this work is based on a Linear Kalman Filter
(LKF), which tries to solve the problem of estimat-
ing the state of a discrete-time process governed by
the equations

xk+1 =

[
I3 ∆tI3
O3 I3

]
xk +wk, (5)

yk =
[
I3 O3

]
xk +nk (6)

where ∆t is the sampling time, I3 and O3 are the iden-
tity and zero matrices of size 3×3, respectively; w
and n are the process and measurement noises with
covariance matrices W and N , respectively. Finally,
x is the state vector of the system, i.e., the posi-
tion and the velocity of the operator x=

[
pT

H ṗT
H
]T ,

and the measured output y is a vector containing
the coordinates of the point PH described in Sec-
tion 3.3. The covariance matrix N is experimentally
estimated, while the covariance matrix Q has been
chosen as

Q=

[
I3∆t2 O3
O3 Q2

]
(7)

where Q2 quantifies the uncertainty on the velocity
dynamics (assumed constant) of the state equations.

Based on the vector nature of the velocity, it is
possible to make some considerations about the di-
rection (trend) of the operator, that is to say, to predict
in which direction he/she is travelling to. Section 4

Figure 6: Estimation of operator velocity.

describes how to take advantage from these consid-
erations for industrial collaborative applications with
the aim to maximize productivity.

The LKF equations implemented in this work are
the standard ones and thus are not reported for brevity,
while the tuned parameters are fully described in Sec-
tion 6.

Figure 6 shows sample movements of the operator
and the three components of his/her estimated speed.

The linear velocity ṗR of the point on the robot
closest to the operator can be computed according to
the differential kinematics equation

ṗR = Jp(q)q̇, (8)

where q [rad] and q̇ [rad/s] are the robot joint posi-
tion and velocity vectors, respectively; while, Jp is
the position part of the Jacobian matrix calculated till
the closest point.

The (ISO/TS 15066, 2016) states that the “di-
rected speeds” of the robot and the human should be
used to compute S. This means that, in eq. (3), vh is
the operator speed in the direction of the moving part
of the robot and vR is the robot speed in the direction
of the selected operator. Note also that these speeds
are vector magnitudes, hence they are always grater
or equal to 0. Therefore, the velocity terms of (3) can
be computed as

vH =

∣∣∣∣ ˙̂pT
H

(
pR− p̂H

‖pR− p̂H‖

)∣∣∣∣ (9)

vR =

∣∣∣∣ṗT
R

(
p̂H −pR

‖p̂H −pR‖

)∣∣∣∣ , (10)

where p̂H and ˙̂pH are the operator position and ve-
locity estimated by the LKF, respectively, and pR is a
vector containing the coordinates of the point PR de-
fined in Section 3.3.

4 FUZZY INFERENCE SYSTEM

The protective separation distance S in (3), computed
by using the speeds of (9)–(10), does not take into ac-
count the relative travel direction of the robot and the



operator. This means that, if the robot and the opera-
tor are going away from each other, the value of S un-
necessarily increases (proportionally to the computed
speed). To improve the production time considering
also this situation, the protective separation distance
has been redefined as follows

S =α[(vHTR+vHTS)+(vRTR)]+(B)+(C+ZS+ZR),
(11)

where α is a coefficient in the interval [0,1] that is
1 when the operator and the robot are actually ap-
proaching to each other and is smaller than 1 other-
wise.

To chose the value of α, a fuzzy inference ap-
proach has been implemented. The fuzzy logic, also
called faded logic, is a methodology in which each
proposition possesses a degree of truth into the inter-
val [0,1] (Ross, 2010). The variable α must be clas-
sified taking into account some qualitative attributes
and it may have varying levels of validity between a
maximum (1) and a minimum (0). Hence, it is neces-
sary to generate linguistic rules of fuzzy inference to
realize a mapping of the inputs to the desired output.

The fuzzy inference process has been developed
as a two-input, one-output, three-rule problem, as
shown in Figure 7.

Figure 7: Fuzzy inference system: the fuzzification step
(red arrow), the implication step (yellow arrow) and the ag-
gregation step (green arrow).

The first step is to select the inputs. Two data in-
puts have been selected:

1. the time derivative of the distance between human
and robot, i.e., ḋ = d‖p̂H−pR‖

dt ;

2. the scalar product between the robot and the hu-
man velocity vectors, i.e., ṗT

R
˙̂pH .

The first input is useful to distinguish cases when the
operator and the robot are getting closer and cases
when they are moving away from each other. The

scalar product specifies the relative direction of travel
of the operator and the robot.

The next step is the fuzzification step (red arrow
of Figure 7). The ranges of variability of each input
have been defined, and the appropriate membership
function of each interval has been selected. This step
requires attention to correctly determine the degree
to which the input belongs to each of the appropriate
fuzzy set, by assigning a fuzzy degree of membership
in the interval from 0 to 1. Two membership functions
have been selected to represent positive (P) and nega-
tive (N) values, a Z-shape and a S-shape, respectively.
These functions, with different parameters, have been
chosen to describe both ṗT

R
˙̂pH and ḋ.

After the inputs are fuzzified, the implication step
(yellow arrow of Figure 7) determines the degree to
which each part of the antecedent is satisfied for each
rule. The antecedent of the developed fuzzy infer-
ence rules has three parts, combined through an AND
method (min) to obtain an implicated number that rep-
resents the result of the rule antecedent. Each rule is
designed to consider one possible risk scenario.

Since the final decision is based on the result of
all the tested rules, the outputs of the rules must be
combined in some way. The aggregation step (green
arrow of Figure 7) is the process by which the fuzzy
sets representing the outputs of each rule are com-
bined into a single fuzzy set, before the last defuzzifi-
cation step. For each interval of the consequent, the
maximum value of the fuzzy set is chosen and the de-
fuzzification method is the centroid, as shown at the
end of Figure 7.

The output value, α, has been generated by an-
alyzing different possible risk situations, with the
twofold aim of avoiding any collisions between hu-
man and robot, and being in line with the current
ISO/TS 15066. With reference to the second rule: if
the human-robot distance is increasing and they are
moving further from each other, than the safety dis-
tance can be decreased. The three rules are summa-
rized in Table 1.
Table 1: Fuzzy rules: [S] Small, [M] Medium, [H] High,
[N] Negative, [P] Positive, [∼] any.

antecedent consequent
ḋ ṗT

R
˙̂pH α

N ∼ H
P N S
P P M

Note that the scalar product between the opera-
tor velocity and the robot velocity (second input) is
a complementary information to the time derivative
of the distance between human and robot (third in-
put). Since ṗT

R
˙̂pH = ‖ṗR‖‖ ˙̂pH‖cosθ, when θ = 180◦,



Figure 8: Problem of the scalar product.

a critical situation is possible. The result of the scalar
product is negative, ṗT

R
˙̂pH < 0, but it is not possible

to distinguish the cases shown in Figure 8, in which
the directions are opposite but it is not known if the
human and the robot are getting closer or are moving
away from each other. This is the reason why it is
necessary to combine the scalar product information
with the time derivative of the distance between the
human operator and the robot.

5 TRAJECTORY SCALING

SSM scenarios usually sacrifice the production time
because a lot of time is spent in low speed mode
when a human operator is inside the collaborative
workspace. On the contrary, the proposed strategy en-
sures human-robot coexistence according to the stan-
dard regulations, and also guarantees the task effi-
ciency by using a time-scaling approach to change
robot operating speed without introducing accelera-
tion discontinuities.

A typical industrial pre-programmed task, T , is
composed by N positions q̃i, associated to veloci-
ties ˙̃qi, accelerations ¨̃qi and time instants t̃i with i =
1, . . . ,N. Typically, the pre-programmed joint posi-
tions have to be interpolated according to the sam-
pling time Tc required by the robot control interface.
In this work a quintic interpolation is used, i.e., the
planned interpolated trajectory is

q̃h = p5(th; T ) (12)
˙̃qh = p4(th; T ) (13)
th+1 = th +Tc, (14)

where th is the h-th discrete time instant, p4 is the
derivative of the polynomial p5, q̃h and ˙̃qh are the
planned joint position and velocity at time th, respec-
tively.

The proposed method modulates the robot speed
by scaling the time with a safety scale factor k, which
can assume values in the interval [0,1]. The scale fac-
tor is related to d (Section 3.3) as shown in Figure 9.

Figure 9: Relation between d and k.

When d is below the minimum protective distance S,
k is 0 and the robot stops. When the distance d is far
from S, i.e. d > νS (ν > 1), the robot can move at full
speed to improve the production time. Between S and
νS the function in Figure 9 smoothly varies to avoid
acceleration discontinuities. Obviously, ν is another
design parameter that changes the size of the scaled
speed mode zone.

Practically, the trajectory is scaled computing (12)
using a scaled time τh, i.e.,

qh = p5(τh; T ) τh+1 = τh + kTc, (15)

where qh is the actual joint command at time th. Ob-
viously, the joint command qh, as well as the scaled
time τh, are generated with sampling time Tc.

This approach effectively scales the joints veloci-
ties. In fact, using (15), it is

τ̇≈ τh+1− τh

Ts
= k. (16)

By time differentiating (15), (17) demonstrates
that the velocity is scaled by the safety factor k,

q̇h = p4(τh; T )k.. (17)

This approach guarantees that the task T remains
the same in position, but, simultaneously, the result-
ing velocity is scaled according to k.

When the operator is going to be into a dangerous
situation, the robot operates at diminished capacity
with limits on velocity that respect human-robot col-
laboration norms, until restoration of the safety con-
ditions. Note that the side effect of the velocity re-
duction is the reduction of the minimum protective
distance S, since this value is proportional to the robot
velocity. Experimental results are shown in Section 6.

6 EXPERIMENTAL RESULTS
AND VALIDATION

This section shows an example of experimental re-
sults obtained by simulating an SSM human-robot



collaboration task inside the collaborative workspace
of Figure 2. A manufacturing industrial sealing oper-
ation has been virtually realized: the robot executes
a pre-planned path at a given nominal speed, while,
suddenly, a human operator enters the collaborative
workspace to perform some manual operation close
to the robot, at different distances.

The main goal of this experiment is to prove the
efficiency of the fuzzy inference approach into in-
dustrial applications to better handle the production
time and, at the same time, to guarantee the safety of
the operators when they are inside the collaborative
workspace.

Table 2 summarizes the used hardware and the ex-
perimental case study.

Table 2: Case study and available hardware.

Robot Yaskawa SIA5F
Collaborative workspace 4x2 m

Depth camera (1) Microsoft Kinect v1
Depth camera (2) Intel RealSense D435

Robot simulated task Sealing operation
Operator simulated task Manual piece change

The covariance matrix Q2 in (7) has been chosen
as

Q2 = diag(0.02, 0.05, 0.05)m2/s2, (18)
while the noise covariance has been estimated by ac-
quiring a constant human position as

N = diag(0.0009, 0.0008, 0.001)m2. (19)

The parameters to compute the protective separa-
tion distance S of (3) and (11) are reported in Table 3.
The value of C has been chosen to better appreciate
the zero speed zone.

Table 3: Constant parameters of S.

TR 0.10s
TS 0.08s
B 0.563mm
ZR 0.001m
ZS 0.1067m
C 0.20m

Figure 10 shows the results of the experiment. The
graph at the top of the figure shows the distance be-
tween the human operator and the robot and it can
be compared with the minimum protective distance
computed as in 3 (SISO in the legend) and the two
thresholds proposed in this paper: S in the legend is
the protective distance computed as in (11) and νS
is the threshold used in the trajectory scaling algo-
rithm (Section 5). The bottom plot of Figure 10 shows
the two inputs of the fuzzy inference system (ḋ and

ṗT
R

˙̂pH ) and the trajectory scale factor k. In this exper-
iment SISO is not used and it is showed in the plot for
comparison purposes. A video of the experiment is
available at https://youtu.be/RzLZ6RQBPCY.

The robot executes a planned task, suddenly (at
about 16s) an operator enters into the workspace sim-
ulating a manual task. This is visible in the top plot of
Figure 10, where the human-robot distance decreases.
Note that for almost the whole task duration the sep-
aration distance robot-operator is below the SISO sig-
nal, this would have caused frequent starts and stops
of the robot. Instead, through the proposed trajectory
scaling algorithm, the robot reduces its velocity ac-
cording to the observed separation distance. This is
visible in the k signal of the bottom plot that varies
according to d. Notice that k goes to 0 only when
the distance d goes below the protective distance S.
Moreover, another property of the proposed solution
is that S increases only when the distance decreases
(i.e., when ḋ < 0) and not when the distance increases.
This is due to the computation of the directed speed
and the fuzzy rules. The shown experiment and the
related video demonstrate how the proposed approach
guarantees a safe human-robot coexistence in the col-
laborative workspace. This is achieved both in ac-
cordance with the ISO/TS regulations and minimizing
dead times in the production process.

7 CONCLUSIONS

The human-robot interaction and their intentions to
compete or cooperate in collaborative workspaces are
challenging research fields. The purpose of this work
is to improve the current regulations both to maxi-
mize the production time and guarantee the safety of
human operators inside the shared workspace. The
expected human movements relative to the robot are
classified to identify all possible industrial SSM sce-
narios from which fuzzy rules for the robot reactions
are derived. Collisions between robot and human op-
erators are avoided by identifying human-robot in-
tersections through a detection algorithm which pro-
cesses data obtained by merging two depth camera
images. Results obtained from experimental data
show the applicability of the presented methods to
many common manufacturing industry applications.

ACKNOWLEDGEMENTS

This work has received funding from the Clean
Sky Horizon 2020 Programme under the LABOR
project, grant agreement n. 785419.

https://youtu.be/RzLZ6RQBPCY


0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1

-0.15

-0.1

-0.05

0

0.05

Figure 10: Experiment: an operator enters the shared workspace while the robot is moving. The top plot shows the estimated
distance robot-operator (d), the protective distances proposed by the regulation without sensing (SISO) and the protective
distances proposed by the paper (S and νS). The bottom plot shows the trajectory scaling factor k, the time derivative of the
distance ḋ and the scalar product of velocities.
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A Multimodal Perception System for Detection of
Human Operators in Robotic Work Cells*

Marco Costanzo, Giuseppe De Maria, Gaetano Lettera, Ciro Natale and Dario Perrone

Abstract— Workspace monitoring is a critical hw/sw com-
ponent of modern industrial work cells or in service robotics
scenarios, where human operators share their workspace with
robots. Reliability of human detection is a major requirement
not only for safety purposes but also to avoid unnecessary
robot stops or slowdowns in case of false positives. The present
paper introduces a novel multimodal perception system for
human tracking in shared workspaces based on the fusion of
depth and thermal images. A machine learning approach is
pursued to achieve reliable detection performance in multi-
robot collaborative systems. Robust experimental results are
finally demonstrated on a real robotic work cell.

I. INTRODUCTION

The paper proposes a sensor fusion strategy which com-
bines depth and thermal images to robustly detect human
operators, e.g., in industrial work cells or in professional
service robotics scenarios, and realize safe human-robot
collaboration (HRC) tasks. The main focus of the current
safety regulations is operators safety during industrial robotic
operations. The safety standards for these applications are
laid out by the International Organization for Standardization
(ISO) 10218-1 [1], 10218-2 [2] and by the upcoming ISO
Proposed Draft Technical Specification (TS) 15066 [3]. Four
types of collaborative scenarios are identified, which are
addressed in post-collision and pre-collision scenarios [4].
Industrial safety requirements do not permit to have the
use of post-collision systems because the physical impact
between the robot and the human operator occurs before the
complete stop of the machinery. Otherwise, a pre-collision
scheme makes use of appropriate exteroceptive sensors to
detect humans and prevent collisions. A Speed and Sepa-
ration Monitoring (SSM) scenario requires that the robot
speed should be monitored according to the robot separation
distance from the human operator. In this paper the SSM
scenario has been selected with the aim to maximize the
production time in industrial work cells or in any professional
service task, and preserve human safety at the same time.
However, it combines two uncertain worlds: the distance
monitoring, which requires an accurate and robust human
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detection algorithm, and the robot speed monitoring, which
should be reactive and efficient.

Distance monitoring can be solved through motion cap-
ture systems, range sensors or artificial vision systems [5].
Nevertheless, localizing human operators robustly is not an
easy task. It is often necessary to fuse several sensors with
different properties. Originally developed for military appli-
cations, thermal cameras provide relevant data to perform
breast cancer diagnostic [6], infrastructure and electrical
systems monitoring, gas or liquid detection [7], inspection
and control tasks in industrial applications [8]. Thermal
cameras are ideal for finding objects of a certain temper-
ature: human detection and tracking (HDT) well fits for this
case, as the body temperature is about 37◦C. Unfortunately,
thermal cameras do not support depth information, which
are necessary to correctly compute the separation distance
between the operator and the robot and apply the current
regulations. The main difficulty of fusing spatial and thermal
images is that a correspondence between corresponding
pixels needs to be found. Similar sensor fusion approaches
for indoor human detection combine RGB data with depth
information [9], using the Histogram of Oriented Gradients
(HOG) proposed in [10] together with depth feature that
describes the self-similarity of an image. Different strategies
are based on Convolutional Neural Networks (CNN), widely
used for object recognition [11] and human detection [12].
A CNN-based RGB-D human detector exploiting the depth
information to develop a region of interest selection method
(ROI) is proposed in [13]. However, the fusion of thermal
and spatial information has gained attention in the last few
years, especially in fields where the spatial data are used as
the main source of information [14], but nowadays there are
no standardized methods to robustly combine them.

The State-of-Art (SoA) publications propose some meth-
ods to deal with the HRC safety: a volumetric representation
of the areas occupied by operators and by the robot has been
studied in [15] to stop the robot when these areas overlap;
as well as, [16] proposes a potential field method to be
used to generate a collision free path. A further approach is
presented in [17] where a safety index is modeled to modify
the robot trajectories and preserve the cooperative task. Many
of these approaches rely on evasive actions to increase safety.
However, in industrial setting, it is generally recommended
to follow the robot predefined path without deviations.

This research paper tackles the HRC problem by intro-
ducing a novel approach to robustly detect human operators
in collaborative work cells through a multimodal perception
system aimed at minimizing false positives to avoid unnec-
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essary robot stops. The paper guarantees human safety in
general multi-robot scenarios. In fact, the algorithm allows
computing the minimum separation distance between every
human operator and every robot within the collaborative
work cell, following the line of the current regulations. The
applicability of the approach in the manufacturing industry
has been obtained not by modifying the robot predefined
path but by scaling down the robot trajectory only when
indispensable, thus trying to maximize the production time
even in presence of humans.

II. HUMAN-ROBOT SEPARATION DISTANCE

This section proposes a novel point-cloud based method-
ology to compute the separation distance between a moving
robot and the closest human operator. Strong emphasis has
been devoted to the proposed HDT strategy which realizes
a robust algorithm to correctly detect human operators into
a HRC scenario in real-time. According to the current
ISOs, the robot speed must be modulated to eventually slow
down the robot pre-programmed trajectory when a dangerous
situation for the human operator occurs.

A. Experimental setup and camera calibration

Nowadays, thermal imaging provides relevant data to per-
form specific robotic applications that require thermal infor-
mation. When combining two or more sources of acquisition,
the resulting multi-sensor system has to be extrinsically
calibrated to find the relative pose between the adopted
sensors. This step can be performed by using a calibration
target. The section explains two developed methods for
camera calibration. The objective is to obtain the pose of
the two cameras as accurate as possible both for the success
of the next merging step and for the final separation distance
computation. Two steps have been necessary.

The first one reliably localizes the pose of the depth
camera with respect to the robot base frame. In literature,
this problem is solved by different calibration procedures,
especially for object recognition applications. Their typical
target is to recognize objects located at about 0.5m from the
camera frame. On the contrary, for the proposed experimental
application, the robot and the operators work about 2.5m far
from the camera. To obtain the desired accuracy, the novelty
of the depth camera extrinsic calibration procedure consists
in exploiting a sphere tracking as detailed below.

The experimental setup of this work is shown Fig. 1 and
consists of two cameras rigidly attached to each other. They
have been arranged in a way that their optical axes are
aligned. The adopted cameras have different field of views
(FOVs) and this implies that some depth pixels (Microsoft
Kinect v1, Focal length: 6.1 mm, FOV: 57x45, image size:
640x480) are outside the thermal image (Optris PI 450, Focal
length: 15 mm, FOV: 38x29, Spectrum: 7.5 to 13 m, image
size: 382x288) and they are not used in the merging step
(see Section II-C.1). The goal of the extrinsic calibration
is to obtain an accurate identification of the camera poses,
which guarantee the minimum accuracy error when the two
camera views are merged.

Fig. 1. The experimental perception system composed of a depth camera
(Microsoft Kinect v1) and a thermal camera (Optris PI 450).

A 3D tracking technique has been developed to calibrate
the depth sensor, by tracking a polystyrene sphere of 0.12m
diameter. The red sphere has been mounted at the robot
end effector, so as to match the center of the sphere with
the end effector frame origin. The developed procedure uses
the M-estimator SAmple Consensus (MSAC) algorithm [18]
(which is an extension of the best known RANdom SAmple
Consensus (RANSAC) algorithm [19]), to find a sphere
which satisfies a radius constraint and provides its geometric
model. The robot has been positioned at specific configura-
tions, which allow to correctly distinguish the target within
the camera view. From the robot joint states, the forward
kinematics immediately computes the position of the red
sphere. At the same time, the developed procedure acquires
the depth image, converts it into point-cloud data [20] (PCD)
and estimates the target model. The method is iterated to try
to cover the entire collaborative workspace and to minimize
the calibration error. Finally, the transformation matrix TTT r

d ,
between the robot frame Σr and the depth camera frame Σd ,
has been evaluated through an optimization algorithm of a
cost function, which combines the corresponding data.

After the depth camera calibration, the extrinsic calibration
of the thermal camera with respect to the depth camera
has been solved. In [21] and [22] a thermal camera and
a depth camera are calibrated by using a perforated grid
placed in front of the sensors. The procedures assume that the
target is located close enough to the sensors lenses because
the objective is to practically solve the calibration but the
approach revealed unsuitable for the application scenario at
hand. The solution consists in using three spheres attached
to a flat cardboard support and heated to be distinguishable
by both the depth and the thermal cameras.

To obtain an estimation of the transformation matrix
TTT d

t , between the depth camera frame Σd and the thermal
camera frame Σt , the spheres have been moved inside the
collaborative workspace by placing the support in 10 config-
urations at distances from the camera in the range where the
human operator is expected to act during the collaborative
task. At every acquisition, the calibration target has been
suitably heated to be detectable from both cameras. The
coordinates pppd

k =
[
xd

k yd
k zd

k

]T of the kth center of the



target sphere have been directly calculated from the depth
image, while the corresponding thermal point coordinates
have been calculated from the thermal image, assuming the
distance from the lens equal to the depth value, i.e., zt

k = zd
k

and

xt
k =

(ak− cxt )z
t
k

fxt

(1)

yt
k =

(bk− cyt )z
t
k

fyt

, (2)

where ak and bk are the pixel coordinates of the sphere center
in the thermal image, cxt , cyt are the pixel coordinates of
the thermal image center and fxt , fyt are the focal lengths
expressed in pixel-related units. Finally, the transformation
matrix TTT d

t has been estimated by minimizing a cost function
that combines the corresponding data.

Note that, the intrinsic calibrations have been performed
by using common patterns, i.e., a chessboard pattern for
the depth camera and an heated circular pattern grid for
the thermal camera. These procedures return the intrinsic
calibration matrices of the cameras, thus, the parameters cxt ,
cxd , cyt , cyd , fxt , fxd , fyt , fyt (index d refers to the depth
camera), which are needed to compute the PCD and (1)-(2).

B. Segmentation pipeline

The basic assumption of the proposed segmentation al-
gorithm (blue pipeline in Fig. 2) is to process exclusively
the information related to the dynamic objects present into
the observed scene. This is because every point-cloud based
strategy always represents a computationally heavy opera-
tion, then a Background Segmentation step has been initially
adopted to subtract the static environment.

Section II-A describes the experimental setup in which the
cameras monitor the surroundings of the manipulator and the
robot kinematic chain is fully visible, as shown in Fig. 2A.
While the collaborative workspace is observed, the robot
executes its task, thus becoming a dynamic entity. Therefore,
the package Real-time URDF Filter [23] has been integrated
at the beginning of the pipeline to distinguish the depth pixels
belonging to the robot model from those belonging to other
dynamic entities and assign them a Not-a-Number (NaN)
value, see Fig. 2B.

The background filtering has been developed through
an efficient algorithm that performs the subtraction of a
stored background, at pixel level: 50 frames of the static
background are initially captured and the mean value of
each pixel is stored in a memory area. At every acquisition,
the current frame subtracts the static frame, as shown in
Fig. 2C. The depth image is then converted to PCD and
a uniform sampling filter is applied to make the algorithm
more reactive, by reducing the clouds density. Finally, the
detection of dynamic entities is executed through a PCD
Clustering step, which processes the point-cloud scene and
provides some clusters as many as single dynamic areas are
detected in the foreground. The Euclidean cluster extraction
method is performed to distinguish all the clusters into
the collaborative workspace. Figure 2D shows two detected

dynamic entities visualized in RViz together with the robot
model. To compensate the sensors measurement noise that
could sometimes provide false clusters, a first constraint is
enforced by defining a minimum cardinality that the areas in
the foreground should have, to be large enough to represent
a human entity. However, the correct discrimination about
validity of the cluster as a real human entity is done through
a novel developed HDT algorithm described in Section II-C.
The Human Validation step waits for the cluster check from
the HDT pipeline, which executes the human detection as
explained in Section II-C.

C. Human Detection and Tracking

The proposed human detection approach makes use of a
Convolutional Neural Network (CNN), whose innovative in-
put is obtained by combining depth and thermal images. The
two information have been processed though a simple and
intuitive pixel-by-pixel technique, never presented elsewhere.
This choice did not allow the authors to use pre-existing data-
sets and pre-trained CNNs but the CNN had to be trained
with a novel, multi-sensory data-set.

A depth camera is suitable for different kinds of environ-
ments because of its adaptability to different lighting con-
ditions: in this work it is adopted to compute the minimum
distance between the human operator and the robot to apply
regulations, but a depth image lets also to distinguish and
localize human surface shapes and their volume, so it is
appropriate to the HDT problem. On the other hand, the
thermal camera distinguishes temperatures and it is ideal for
finding objects of a specific temperature as the human body,
which is about 37◦C.

CNN solutions which process only thermal images can
be often not sufficient in those applications where large,
hot objects, e.g., tools used in the manual task or, more
generally, small temperature gradients could be present. On
the contrary, CNN trained to detect human shapes into pure
depth images can confuse human operators with objects of
similar shapes, e.g., a plastic mannequin, a coat rack, a
lamp. Therefore, merging depth and thermal images makes
the HDT approach more robust, avoiding false positives and
making correct decisions about human classification. More-
over, the proposed CNN strategy allows also to correctly
localize the human operators into the observed scene. This
information is then sent to the segmentation pipeline to select
who is the human cluster which is the closest to the robot
and continue the computation of the separation distance from
the manipulator. In these terms, thermal imaging is used as
complementary information to spatial ones and represents
a vision strategy that goes beyond SoA human detection
approaches based on background subtraction.

1) Depth-Thermal mapping: The extrinsic calibrations
explained in Section II-A are a first step towards a correct
mapping, that means finding matches between the depth
image and the thermal image. Since the adopted cameras
have different FOVs and resolutions, the resulting map size
must correspond to the smallest one. According to the
experimental setup shown in Fig. 1, the mapping step builds



Fig. 2. Implemented human detection and tracking pipeline: the background segmentation (first three blue labels) processes the depth image to subtract the
static environment and to highlight only dynamic shapes. At the same time, the depth image and the corresponding thermal image are merged into a single
RGB channel (green and red labels, respectively). The obtained images are then combined through a mapping matrix to reliably localize workers (orange
labels) and distinguish them from non-human clusters (human validation step); eventually, the minimum distance between the closest human operator and
the robot is computed.

Fig. 3. The algorithm for mapping depth and thermal images finds pixel-
by-pixel matches between the two images: the result is a 382×288 matrix.

a 382×288 matrix, the size of the thermal image shown in
Fig. 3.

The mapping step has been solved through a pixel-by-
pixel procedure: the pixel of the depth image, of indices
(m,n), contains the depth value, zd

m,n, which can be acquired
to compute the corresponding Cartesian point coordinates
pppd

m,n =
[
xd

m,n yd
m,n zd

m,n
]T , similarly to (1)-(2),

xd
m,n =

(m− cxd )z
d
m,n

fxd

(3)

yd
m,n =

(n− cyd )z
d
m,n

fyd

. (4)

The Cartesian point is then expressed with reference to the

thermal camera frame through the relation[
pppt

m,n
1

]
= TTT t

d

[
pppd

m,n
1

]
. (5)

Using the intrinsic parameters of the thermal camera, the
corresponding pixel indices of the point pppt

m,n into the thermal
image (a,b) are finally computed by inverting (1)-(2). If
they are contained in the FOV of the thermal image, the
corresponding depth pixel indices (m,n) are written into
the mapping matrix at the indices (a,b); otherwise, they
are discarded because they are outside the mapping image
size. Note that, if the observed object is far enough, the
mapping matrix does not depend on the distance. Thus the
mapping matrix can be computed offline by using a fixed
value of zd

m,n compatible with the working area, hence saving
computational load.

2) Sensor fusion: Multimodal sensor images can be com-
bined through different image fusion techniques, which
work at different merging levels: pixel-by-pixel, combining
signals, using relevant features or at symbol levels. This
paper provides an image fusion algorithm at pixel level but
represents a novel approach with respect to the most widely
used pixel-level image fusion algorithms [24] which never
merge depth and thermal information.

The first requirement of the proposed sensor fusion ap-
proach is to preserve all valid and useful information from
the two sources to be combined, while not introducing distor-
tions. For the purpose of this work, the depth image and the
corresponding thermal image have been merged to provide an
enhanced single view of a scene with extended information
content, through the mapping matrix of Section II-C.1. The
proposed approach, callable RGB Mapping Approach (RGB-
MA), consists in defining the intensities of empty RGB



channels. This is also because, to the best of the authors
knowledge, CNNs work better with RGB images. RGB-MA
strength is that it assigns the same priority to the input
sources. The result is no longer a grayscale, as a depth image
alone could be, or a weighted average image which assigns
different priorities to the sources, but it is an RGB image
where the depth data have been mapped on the green channel
(see Fig. 2H) and the temperature values have been mapped
on the red channel (see Fig. 2K). Specifically, the original
depth sensor value, sd , and the corresponding temperature
sensor value, st , have to be normalized into the interval [0, 1]
(see Fig. 2G and J). To do this, a minimum and a maximum
variability ranges of the source values have been defined for
both thermal, mint , maxt , and depth, mind , maxd , cameras.
They do not actually correspond to the ranges of the sensors
technical specifications, but they have been chosen according
to the values detectable into the considered workspace. More
in detail, the detectable depth values are included between
0.30m and 4.0m, while the detectable temperature values
are within the range [0, 50]◦C, which are suitable for any
type of human detection task.

The color information inserted into the specific channel of
the (i,j)-th pixel of the output image must be mapped to 8
bits. The R (red) value is computed, by acquiring st

i, j from
the thermal image, as

Ri, j = round

(
255

st
i, j−mint

maxt −mint

)
; (6)

the G (green) value is computed by acquiring sd
m,n from the

depth image, where m and n are contained into the (i,j)-th
value of the mapping matrix (Section II-C.1),

Gi, j = round

(
255

sd
m,n−mind

maxd−mind

)
; (7)

the B (blue) value of the resulting image is always zero.
The result is shown in Fig. 2L. Note that the proposed

image fusion technique leaves another channel that could be
used for a further input source. Section IV report the results
of the approach for a typical SSM scenario.

3) CNN for Human Detection: To assess the effectiveness
of the fused images of Section II-C.2, YOLOv3 [25] has been
used for real-time human detection. The selected framework
is an off-the-shelf SoA 2D object detector pre-trained on
ImageNet [26] and fine-tuned on the MS-Coco [27] data-set.
It is an extremely fast and accurate object detection system,
which is born to detect semantic objects of a certain class,
e.g., humans, buildings and cars, in RGB images. Nowadays,
there are no neural networks which have been trained on
combined images such as those proposed by this paper, so
the YOLOv3 CNN model has been re-trained to adapt the
detection system to the Depth-Thermal (D-T) images. The
following steps have been executed:
• definition of a Human class;
• exclusion of the YOLOv3 pre-trained classes from the

prediction;

• building of the training data-set acquiring frames from
D-T video stream;

• manual labelling of each frame;
• retrain of the YOLOv3 CNN weights.
After the training step, the CNN has been applied to the

real time D-T video stream to obtain the human prediction. A
bounding box is estimated around each detected human and
its coordinates are finally sent to the point-cloud pipeline,
as shown in Fig. 2M. Note that both the training and the
prediction process need high computational cost and they
have been executed on a proper GPU (NVIDIA Titan V).

D. Human-Robot separation distance

Once the predicted bounding boxes are sent to the seg-
mentation pipeline, each cluster is verified: each point of
the cluster is transformed into depth pixel coordinates (by
inverting (3)-(4)). Since the bounding box is expressed in
the thermal image plane, the selected pixel is converted
into depth image coordinates through the mapping matrix
(Section II-C.1). If at least 50% of the cluster points belong
to a bounding box, the cluster is labeled as human and passes
the check. Figure 2E shows two clusters: the red human
operator, which is correctly detected by the CNN, and the
yellow plastic mannequin, which is correctly not labeled as
human.

The Human Validation check is a fundamental step to
compute the correct separation distance between human
operators and the robot to apply the actual regulations of
industrial robotic applications. Therefore, the last step of the
segmentation pipeline (Fig. 2F) identifies the nearest pair of
points, one belonging to the robot (PR) and the other one
belonging to the operator (PH ), that minimize the distance,
i.e.,

PH ∈H ,PR ∈R | d(PH ,PR)≤ d(P′H ,P
′
R)

∀P′H ∈H ,P′R ∈R,
(8)

where d(·, ·) is the Euclidean distance between two points,
H and R represent the set of all points that belong to the
operator and the robot, respectively.

If PH is detected through the HDT strategy, a robot model-
ing method has been implemented to detect PR. To take into
account the link volumes and not only specific points, the
proposed solution uses spheres as in [28] and [29] to model
robot links. The kinematic chain has been padded through 12
dummy frames to include the robot homogeneously, creating
a virtual 0.10m diameter safety sphere around each of them.

Therefore, the pair of closest points can be immediately
identified: the algorithm calculates the distance between all
points of the verified clusters point clouds and the origin of
every robot frame. The robot point PR will be on the closest
virtual sphere along the line connecting the origin with PH .

This step strongly justifies the choice of a point cloud
based approach. In fact, it provides satisfactory accuracy and
precision: it allows tracking humans also when they are not
completely visible from the camera view, unlike common
skeleton-based techniques; it is not necessary that human
operators are in front of the camera view because the point



Fig. 4. Identification of the minimum distance points between the whole
robot (yellow sphere) and the closest human operator (purple sphere).

cloud-based approach will recognize them anyway; more
detailed body parts can also be detected, e.g., a elbow, the
head, an hand, the chin or the chest. Figure 4 shows the
results: the developed CNN distinguishes human operators
belonging to the Human class (in red) from other clustered
objects (in yellow), i.e., a plastic mannequin and a chair,
which are not labeled as humans and they are not considered
for the safety separation distance computation, even if they
are possibly closer to the robot. Note that the closest human
cluster is selected in case of many human operators.

III. TRAJECTORY SCALING

Industrial SSM scenarios allow the robot system and the
human operator to move concurrently in the collaborative
workspace. Risk reduction is achieved by maintaining at least
the minimum protective separation distance, S, between the
operator and the robot [3], assumed constant here. During
robot motion, the robot system never gets closer to the
operator than S. When the separation distance, d, is less than
S, the robot system stops, before it can impact the operator.
When the operator moves away from the robot system, it can
resume the motion automatically while maintaining at least
the protective separation distance.

The proposed strategy ensures human-robot coexistence
according to the standard regulations methodology, introduc-
ing a low speed mode which slows down the robot nominal
velocity when the operator is inside a hazardous workspace.
The approach guarantees the robot task efficiency by using a
time-scaling method to change robot operating speed without
introducing acceleration discontinuities.

A. Single robot work cell

With reference to a single robot case, a typical industrial
pre-programmed task, T , is composed by N positions, q̃qqi,
associated to velocities ˙̃qqqi, accelerations ¨̃qqqi and temporal

Fig. 5. Relation between the computed separation distance d (x axis) and
the scale factor k (y axis).

instants t̃i. Typically the pre-programmed joint positions have
to be interpolated according to the sampling time Tc required
by the robot. In this work a quintic interpolation is used, i.e.,
the planned interpolated trajectory is

q̃qqh = ppp5(th; T ) (9)
˙̃qqqh = ppp4(th; T ) (10)

th+1 = th +Tc (11)

where th is the h-th discrete time instant, ppp4 is the derivative
of the polynomial ppp5, q̃qqh and ˙̃qqqh are the planned joint position
and velocity at time th respectively.

The proposed algorithm modulates the robot speed by
scaling the time with a safety scale factor k, which can
assume values inside the interval [0,1]. The scale factor is
related to d (Section II-D) as shown in Fig. 5. When d is
below the danger distance dd = S, k is 0 and the robot stops.
When the distance d is far from the warning distance dw > S,
i.e., d > dw, the robot can move at full speed to improve the
production time. Between dd and dw the function in Fig. 5
smoothly varies to avoid acceleration discontinuities.

Practically, the trajectory is scaled by computing (9) with
a scaled time τh, i.e.,

qqqh = ppp5(τh; T ) (12)
τh+1 = τh + kTc (13)

where qqqh is the actual joint command at time th. Obviously,
the joint command qqqh, as well as the scaled time τh, are gen-
erated with sampling time Tc. The effect of this approach is
the actual scaling of the joints velocities. In fact, using (13),

τ̇ ≈ τh+1− τh

Ts
= k. (14)

By differentiation (12), the following equation demonstrates
that the velocity is scaled by the safety factor k

q̇qqh = ppp4(τh; T )k. (15)

This approach guarantees that the task T remains the same
in position, but, simultaneously, the resulting velocity is
scaled according to k. When the operator is going to be
into a dangerous situation, the robot operates at diminished
capacity with limited velocity according to human robot
collaboration norms, until restoration of safety conditions.
Experimental results are shown in Section IV.



Fig. 6. Two cases of human false positives: a dummy labeled as human
in the depth CNN approach (left); a hot moving robot labeled as human in
the temperature CNN approach (right).

B. Multi-robot work cell

The strategy discussed so far can be easily extended to
multi-robot work cells. It is necessary to pay close attention
to distinguish the independent robots case from the cooper-
ating robots case.

If the work cell is composed by robots which execute
independent taskseach robot must be slowed down according
to the separation distance with the proper closest human
operator. Thus, the whole pipeline proposed in this paper
is executed for each robot and each robot speed is scaled
independently from the others. This solution has a positive
impact on the production time because it reduces the speed
only of the robots involved in dangerous situations.

On the contrary, if the work cell is composed by coop-
erating robots, e.g., an assembly line or the transportation
of a commonly held object as in [17],the application of the
strategy to the single robots independently can compromise
the task execution. Whereas, the perception pipeline must
be executed for each robot worker until the computation of
the scaling factors, Then, the scale factor corresponding to
the most dangerous robot is applied to all the configuration
variables of the whole robotic system to preserve the coop-
erative task. Suitable danger metrics can be defined to take
this decision, e.g., the scale factor of the robot closest to the
human can be selected.

IV. EXPERIMENTAL RESULTS
The section shows a complete experiment that represents

a typical SSM collaborative scenario to describe the advan-
tages of the approach. Emphasis has been devoted to the
proposed DT-CNN to better highlight the performance.

A. Performances of DT-CNN

To test the performance of the Sensor Fusion approach,
two others CNNs have been trained based on the depth (D-
CNN) and temperature (T-CNN) information, respectively.
The networks have been trained and tested with the same
input data-set. Note that the training phase needed about
1000 training samples to reach the presented performance.
This observation represents another great advantage of using
the proposed approach if compared with many pre-trained
CNNs, which usually needed tens of thousands of images to
be trained.

The Mean Average Precision (maP) has been adopted
as a metric to measure the accuracy of each CNN [30].

TABLE I
CNNS TESTING RESULTS

CNN mAP % False Positives % False Negatives %
D-CNN 65.09 36.87 17.53
T-CNN 62.76 64.35 4.37
DT-CNN 57.54 2.47 11.85
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Fig. 7. Experiment: an operator enters the shared workspace while the
robot is moving. The top plot shows the estimated distance robot-operator
d, the dangerous distance dd and the warning distance dw. The bottom plot
shows the trajectory scaling factor k adopted to scale the robot velocity.

Considering the bounding boxes returned from the prediction
and the ground truth, the estimation of mAP is based on
the calculation of various metrics such as precision, recall
and Intersection over Union (IoU). Since the mAP does
not consider false positives and negatives, the percentage of
the erroneous detection has been estimated as an additional
metric.

Comparing the results of Table I, the DT-CNN provides
a mAP slightly lower than other two methods since it is
computed by considering only true positives. Whereas, the
percentage of false positives is considerably lower than the
others. In all cases the percentage of false negatives remains
low. The high percentage of false positives of single-source
approaches is to be found in cases where hot objects (T-
CNN) or objects with shapes comparable to human ones (D-
CNN) can be confused with a human (Fig. 6).

B. Complete experiment

To evaluate the combined approach (human detection and
trajectory scaling) a SSM scenario has been experimentally
tested. A video of the experiment is available at https:
//youtu.be/BrcvKmSiR9Q. A collaborative manufac-
turing industrial operation has been considered. The robot ex-
ecutes a pre-planned task at a given nominal speed. Suddenly,
an operator enters the robot workspace to perform some
manual operations (see the accompanying video). Results
are shown in Fig. 7. At about 15s the operator enters the
collaborative workspace and the system starts to measure
the separation distance d (blue line). When d goes below the
warning distance dw the trajectory scaling factor k becomes
lower than 1 and the robot reduces its velocity without
changing its path. In some intervals of the experiment d goes
below the dangerous distance dd thus k becomes 0 and the

https://youtu.be/BrcvKmSiR9Q
https://youtu.be/BrcvKmSiR9Q


robot stops.
In the accompanying video the DT-CNN has been also

compared with the networks that use single sources (depth
or thermal). It is clear that the DT-CNN ensures a better
human detection minimizing the false positives.

This experiment demonstrates how the proposed approach
is able to automatically detect human operators in collabora-
tive workspaces and modulate the robot velocity according
to the current regulations.

V. CONCLUSIONS

This work shows a multimodal perception system based
on a thermal and a depth camera adopted to detect human
operators in general multi-robot work cells. The cameras
have been coupled in a fixed way and calibrated. Results
show that the calibration error is small enough to implement
a new sensor fusion technique to process the camera images
and robustly detect humans into the observed scenario. The
fusion technique consists in defining an RGB image by
combining depth and thermal images on two channels. The
fused image is then processed by a CNN specifically trained
to detect humans in the workspace. The approach based on
the fused images has been demonstrated to be more efficient
than single source perception data in a real collaborative
scenario. Future developments will be devoted to devise
an SSM strategy where, rather than assuming a constant
minimum protective distance, it is computed based on the
actual robot and human velocities estimated through the
same perception data used for distance computation. A risk
analysis based on the real velocity information can lead
to the definition of a less conservative minimum protective
distance, hence maximizing productivity.

REFERENCES

[1] “Robots and robotic devices - Safety requirements for industrial robots.
Part 1: Robots.” International Organization for Standardization” Tech-
nical report, 2011.

[2] “Robots and robotic devices - Safety requirements for industrial robots.
Part 2: Robot system and integration.” International Organization for
Standardization” Technical report, 2011.

[3] “Robots and robotic devices - collaborative robots.” International
Organization for Standardization” Technical report, 2016.

[4] J. Heinzmann and A. Zelinsky, “Quantitative safety guarantees
for physical human-robot interaction,” The International Journal of
Robotics Research, vol. 22, no. 7-8, pp. 479–504, jul 2003.

[5] F. Flacco, T. Kroger, A. D. Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in 2012 IEEE Interna-
tional Conference on Robotics and Automation. IEEE, may 2012.

[6] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P.
Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital
infrared thermal imaging system in the detection of breast cancer,”
The American Journal of Surgery, vol. 196, no. 4, pp. 523–526, oct
2008.

[7] M. Vollmer and K.-P. Mllmann, Infrared Thermal Imaging. Wiley-
VCH Verlag GmbH & Co. KGaA, dec 2017.

[8] H. Kaplan, Practical Applications of Infrared Thermal Sensing and
Imaging Equipment. SPIE Publications, 2007.

[9] B. Li, H. Jin, Q. Zhang, W. Xia, and H. Li, “Indoor human detection
using RGB-d images,” in 2016 IEEE International Conference on
Information and Automation (ICIA). IEEE, aug 2016.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). IEEE, 2005, pp. pp.
886–893 vol. 1.

[11] M. Liang and X. Hu, “Recurrent convolutional neural network for
object recognition,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, jun 2015.

[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun, “Overfeat: Integrated recognition, localization and
detection using convolutional networks,” CoRR, vol. abs/1312.6229,
2013. [Online]. Available: http://arxiv.org/abs/1312.6229

[13] K. Zhou and A. Paiement, “Detecting humans in rgb-d data with
cnns,” in 15th IAPR International Conference on Machine Vision
Applications (MVA), Nagoya University, Nagoya, Japan. IEEE, 2017.

[14] S. Vidas, P. Moghadam, and M. Bosse, “3d thermal mapping of
building interiors using an RGB-d and thermal camera,” in 2013 IEEE
International Conference on Robotics and Automation. IEEE, may
2013.

[15] P. Rybski, P. Anderson-Sprecher, D. Huber, C. Niessl, and R. Sim-
mons, “Sensor fusion for human safety in industrial workcells,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, oct 2012.

[16] P. Zhang, P. Jin, G. Du, and X. Liu, “Ensuring safety in human-robot
coexisting environment based on two-level protection,” Industrial
Robot: An International Journal, vol. 43, no. 3, pp. 264–273, may
2016.

[17] M. Lippi and A. Marino, “Safety in human-multi robot collaborative
scenarios: a trajectory scaling approach,” IFAC-PapersOnLine, vol. 51,
no. 22, pp. 190–196, 2018.

[18] S. Choi, T. Kim, and W. Yu, “Performance evaluation of ransac
family,” in Procedings of the British Machine Vision Conference 2009.
British Machine Vision Association, 2009.

[19] C. Papazov and D. Burschka, “An efficient ransac for 3d object
recognition in noisy and occluded scenes,” in Computer Vision – ACCV
2010. Springer Berlin Heidelberg, 2011, pp. 135–148.

[20] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (PCL),” in
IEEE International Conference on Robotics and Automation. IEEE,
may 2011.

[21] T. Luhmann, J. Piechel, and T. Roelfs, “Geometric calibration of ther-
mographic cameras,” in Thermal Infrared Remote Sensing. Springer
Netherlands, 2013, pp. 27–42.

[22] J. Rangel and S. Soldan, “3d thermal imaging: Fusion of thermog-
raphy and depth cameras,” in Proceedings of the 2014 International
Conference on Quantitative InfraRed Thermography. QIRT Council,
2014.

[23] N. Blodow, “Realtime urdf filter,” 2012. [Online]. Available:
http://github.com/blodow/realtime urdf filter

[24] B. Yang, Z. liang Jing, and H. tao Zhao, “Review of pixel-level image
fusion,” Journal of Shanghai Jiaotong University (Science), vol. 15,
no. 1, pp. 6–12, feb 2010.

[25] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.
org/abs/1804.02767

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Computer Vision – ECCV 2014. Springer International
Publishing, 2014, pp. 740–755.

[28] S. I. Choi and B. K. Kim, “Obstacle avoidance control for redun-
dant manipulators using collidability measure,” in Proceedings 1999
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients (Cat. No.99CH36289). IEEE, 1999.

[29] P. Bosscher and D. Hedman, “Real-time collision avoidance algorithm
for robotic manipulators,” in 2009 IEEE International Conference on
Technologies for Practical Robot Applications. IEEE, 2009, pp. 113–
121.

[30] W. Su, Y. Yuan, and M. Zhu, “A relationship between the average
precision and the area under the roc curve,” in Proceedings of the 2015
International Conference on The Theory of Information Retrieval,
ser. ICTIR ’15. New York, NY, USA: ACM, 2015, pp. 349–352.
[Online]. Available: http://doi.acm.org/10.1145/2808194.2809481

http://arxiv.org/abs/1312.6229
http://github.com/blodow/realtime_urdf_filter
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://doi.acm.org/10.1145/2808194.2809481


applied  
sciences

Article

Human–Robot Interaction for Improving Fuselage
Assembly Tasks: A Case Study

Elena Laudante, Alessandro Greco * , Mario Caterino and Marcello Fera

Department of Engineering, University of Campania Luigi Vanvitelli, via Roma, 29–81031 Aversa (CE), Italy;
elena.laudante@unicampania.it (E.L.); mario.caterino@unicampania.it (M.C.);
marcello.fera@unicampania.it (M.F.)
* Correspondence: alessandro.greco@unicampania.it; Tel.: +39-081-50-10-318

Received: 17 July 2020; Accepted: 17 August 2020; Published: 20 August 2020
����������
�������

Abstract: In current industrial systems, automation is a very important aspect for assessing
manufacturing production performance related to working times, accuracy of operations and
quality. In particular, the introduction of a robotic system in the working area should guarantee
some improvements, such as risks reduction for human operators, better quality results and a speed
increase for production processes. In this context, human action remains still necessary to carry out
part of the subtasks, as in the case of composites assembly processes. This study aims at presenting a
case study regarding the reorganization of the working activity carried out in workstation in which a
composite fuselage panel is assembled in order to demonstrate, by means of simulation tool, that
some of the advantages previously listed can be achieved also in aerospace industry. In particular,
an entire working process for composite fuselage panel assembling will be simulated and analyzed in
order to demonstrate and verify the applicability and effectiveness of human–robot interaction (HRI),
focusing on working times and ergonomics and respecting the constraints imposed by standards ISO
10218 and ISO TS 15066. Results show the effectiveness of HRI both in terms of assembly performance,
by reducing working times and ergonomics—for which the simulation provides a very low risk index.

Keywords: aerospace production; ergonomics; human–robot interaction; simulation

1. Introduction

In the new industrial era, ergonomics is crucial for occupational safety and productivity
improvement in different manufacturing sectors such as the automotive and aerospace industry, which
is one of the largest and most demanding production areas. Therefore, safety is a fundamental aspect
that is sought through the use of improved tools in production processes, and the implementation
of efficient and safe techniques to adapt people to work in order to optimize well-being and to
increase productivity.

Focusing on the aerospace field, the design of appropriate workstations is essential to improve
occupational health, safety and work efficiency [1]. Even if aerospace production is not as systematized
as automotive production—with much longer cycle times—it is equally affected by ergonomic issues.
On the contrary, in many working activities characterizing aerospace production lines, the biomechanical
load is very high due to awkward postures, lifting heavy components, exerting high forces and repetitive
actions. Even in the case of the aerospace industry, if workers are subject to these factors, the risk of
injury and muscle fatigue is high [2].

Many studies show that interactions among humans, technologies, organizations and working
environments are strictly influenced by ergonomics. Often, the main causes of quality deficiencies are
associated with ergonomic issues in terms of environmental conditions, suitable design of technology
and an inappropriate organization [3].
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Therefore, ergonomics may become the driving force for the improvement of new quality
processes and production strategies. In aerospace field, improving ergonomics allows reaching the aim
of producing high quality aircraft through the study of human specifications for the suitable design of
the living and working environment [4]. Tools, devices, machines, appliances and the environment all
lead to the advancement of the safety levels, well-being and human performances, as suggested by
Kroemer et al. [5].

In industry, humans represent the primary production resource, and their efficiency in performing
working tasks represents the main factor of productivity, a primary factor of economic activity [6].

In the literature concerning aerospace applications, it is possible to find many studies on the
analysis of ergonomic aspects such as the safety and comfort in the passenger cabin and passenger
compartment. These studies are mainly focused on the assessment of key factors, such as head and
legroom and the ease with which the stowage can be reached. However, from the production process
point of view, rarely ergonomic factors have been analyzed during the assembly phases, applying
ergonomics principles only in borderline situations and in limited space, a typical condition to which
the operators are exposed, which increase the risk of musculoskeletal injuries [7].

In this sense, studies were conducted during the wing assembly phases which, as most aerospace
components, require static and uncomfortable postures that increase the risk of physical illness
and hinder the execution of tasks. Different solutions to optimize the assembly process were
investigated [8,9], by changing the orientation and accessibility of the product through the introduction
of a rotating device capable of keeping the entire wing in an open box condition and allowing the
operator to assume ergonomic postures.

However, except in rare case, since ergonomics has never been adequately considered, the need
to design new production lines, based on ergonomics principles, arises; in this case, simulation
tools and virtual ergonomics are essential to design safe and high-performance workstations [10].
Indeed, in the recent years the industrial world is experiencing a massive implementation of digital
technological systems. These could be useful for better verifying and validating the ergonomic factors
in the design, production and maintenance processes and, in general, for testing the design solutions
and the functionality of machines or robots. This allows detecting certain errors before the real
production phases.

About ergonomics, simulation and digital twin (DT) allow considering human factors preventively,
since the design phase. This is a fundamental aspect of the Industry 4.0 paradigm, which has the
human-centered design as one of its main pillars.

In the literature, there are many studies focused on the use of virtual simulation for investigating the
ergonomic issues in manufacturing production processes, especially for the automotive sector [11–15],
even if, as demonstrated by Cimino et al. [16], in the current literature, DTs have many missing elements
to be compliant to their description. The numeric approach provided by DT and simulation, gives the
opportunity to simulate manual or automatized working tasks and, hence, to evaluate the performance
indices and to identify critical issues in a virtual scenario, without any real experimental test.

A further potential contribution for reducing exposure to occupational risk and at the same time
increasing production efficiency is certainly the introduction of robots into the production system.

The use of high-tech industrial robotics, now widespread in all manufacturing sectors, is finding
its way into almost all phases of the production process, from automated and flexible assembly to
component processing, from production control to final palletization in order to guarantee control,
quality and flexibility. Obviously, the use of robots is also changing the human role, which in the era of
Industry 4.0 is becoming smarter than before, leaving to robots and machines the hardest tasks [17].

In aerospace, this implementation is currently not comparable to other production fields. Assembly
in aircraft production is among the least automated sectors of the industry for different reasons. These
are large and complex systems that involve a very wide variety of activities to be carried out in the
production phases, whose aerospace components require low production numbers, with processes
that require hours of work for the single component.
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The workspace is limited and with the presence of obstacles and technical barriers in compliance
with the need to achieve high levels of quality and precision and to satisfy safety and reliability.
In response to the relative difficulties in introducing robotics in the aerospace sector, research is moving
towards the implementation of robotic instrumentation initially tested through artificial visions and
virtual prototyping, offering new perspectives to aerospace production.

In different studies, the strong benefits that the use of robotics can bring within the aerospace
process are being understood, as in the case of Tingelstad et al. [18]. They have shown how the use of
industrial robots, associated with a high precision noncontact measurement system, allows automating
some assembly and spot welding operations for aerospace components.

The application of the human-centered design approach and the introduction of robots that can
interact with humans in the production system could represent a challenge for the aerospace industry
which, as demonstrated by the lack of literature, is still linked to essentially manual and no repeatable
production systems. In particular, the use of virtual simulation, being an open issue for aerospace
applications, will allow technical data to be transformed into three-dimensional designs with a strong
visual impact covering all phases of the design cycle.

Aim of this study, part of a Clean Sky Horizon 2020 research project, is to present a methodology
that, by using simulation, enables users to evaluate advantages due to the introduction of a HRI in
a completely manual work cell before the cell is physically realized. Results from a real case are
presented. Case study is about the reorganization of the working activity carried out in a workstation
in which a composite fuselage panel is assembled no more only by humans. In detail, robots will
be introduced for carrying out several operations, sharing the same working space with the worker
and respecting all the safety requirements. As already partially presented in [19], the introduction of
HRI enables both a working times reduction and also an improvement of the workload for humans,
as demonstrated in the following sections. By performing a simulation, the adopted solution was
verified and the ergonomic index related to postures assumed by workers during manual tasks was
evaluated by mean of OWAS (Ovako working posture analysis system) method.

The use of digital models and simulation represents a fundamental step for solving validation
studies for the introduction of automatic processing systems instead of the traditional systems used for
composite materials, which are very often manual and not repeatable.

The reminder of this study is organized as follows: Section 2 focused on the Human–Robot
Interactions and its advantages for industrial applications. Moreover, a wide overview about the
regulatory framework in robotics is provided. Section 2.1 describes the methodology herein used
to assess benefits of HRI introduction. Section 3 describes the investigated case study regarding a
real workstation in aerospace production line, that will be only described using words or misaligned
data to preserve the confidentiality of the project results; in particular, a composite fuselage panel is
assembled and riveted, with a detailed description about a numeric simulation and the data provided.
Section 4 presents results analyses and discussion while Section 5 further concludes the study.

2. Human–Robot Interaction and Regulatory Frameworks

Recently, there has been a massive growth of the interest by industries about the possibility to
introduce safe robots in their production lines in order to improve the production itself by letting robots
share common space with humans. Humans and robots could potentially execute a variety of useful
tasks under safety premises [20]. The study of robotic systems capable of perceiving the environment
in a complex way and to interact with it is a recurring topic especially in the human–robot interaction
field and represents the starting point for advanced research and technology transfer, considering
interfaces and human–robot interaction one of the main research objects of the discipline of robotics.

Typically, HRI is often associated with the use of collaborative robots. However, an interesting
differentiation has been proposed by Schmidtler et al. [21], which identifies three kinds of interaction:
coexistence, cooperation and collaboration. Coexistence occurs when human and robot are in the same
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space at the same time. In cooperation, humans and robots share the same aim. However, by adding a
physical contact (auditory or haptic), it is possible to talk about collaboration.

Other levels of interaction have been introduced by Shi et al. [22]: (i) low—when the human does
not enter the working space of robotic system; (ii) medium—characterized by a de-energization of
servo drives when human is close; (iii) high—when the robot can move near humans.

Bender et al. [23] even proposed five levels of interaction: cell—when the robot is in a cage;
coexistence—when human and robot does not share the workspace not shared; synchronized—when
only one between human and robot is present at a time; cooperation—when human and robot share
the workspace, but they do not perform simultaneous tasks; collaboration—when human and robot
work on the same product simultaneously.

As a still open issue, many other differentiations have been proposed in the literature—even if
none of them is exhaustive [24]. Regardless, in the future, HRI will surely tend increasingly towards
replicating human–human interactions.

The introduction of robots into a workspace to carry out assembly operations allows to achieve
several benefits, especially regarding the quality of operations, task repeatability, reduction of working
times and reduction of ergonomic risk. Table 1 describes the pros and the cons considering three modes
of working in a workstation: only human, only robot and human and robot together (HRI).

Table 1. Pros and cons of human–robot interaction (HRI).

Pros Cons

Human
Perception of operations

Decision making
Working-process control

Working times
Ergonomic issues

Task repeatability not ensured
Quality of operations

Fatigue
Working load

Risk of injuries
High full cost

Robot

Reduction of working times
Quality of operations

Task repeatability
Not ergonomic issues
Continuous working

Scale economy

No perception of operations
Low control of working process

Human–Robot Interaction

Reduction of working times
Quality of operations

Task repeatability
Reduction of ergonomic issues

Continuous working
Decision making

Perception of operations
Working-process control

Continuous safety control

However, improved quality of life and increased levels of occupational safety are the basis for the
massive introduction of flexible automation in current production processes. In the case of repetitive,
monotonous and dangerous tasks, the implementation of robotic systems makes it possible to increase
the quality and precision of work [25] as well as reduce production costs and the relationship between
humans and robots that defines the morphology of increasingly flexible, sustainable, ergonomic,
intelligent and smart factories [26]. Sensors, machines, workers and IT systems connected to each other
along the value chain, give rise to countless technical and economic benefits for future manufacturing
through the use of different technologies that fit into the different industrial phases, starting from
product/process design, monitoring and control, production operations, services.



Appl. Sci. 2020, 10, 5757 5 of 17

The factory of the future will be characterized by human–machine coexistence, cooperation and
coordination where the latter adapts to human’s times and ways and through which advantages such
as production flexibility, high performance and competitiveness on the global market are generated.
The autonomy of "evolved" robots derives from the ability to process information collected by sensors
and to plan the sequence of actions to be taken.

Thanks to numerous studies on safety in HRI that are being conducted [27], it is plausible to argue
that robots interacting with humans will not require perimeter security fences. The will replace human
in performing repetitive or dangerous working tasks, increasing the efficiency of industrial plants
and ensuring the workers’ safety. Among these types of robots, currently Collaborative Robots are
undoubtedly the most widespread in innovative industrial contexts, representing the avant-garde of
robotics in the industry. However, as anticipated, there is concern about its impact on occupational
health and safety management [28].

In the complexity of a HRI, the physical viewpoint is mainly focused on the risks of collisions
occurring between the robot and its user [29].

Human–robot collaboration needs to deep-in safety aspects, comfort of use, safety perception and
ergonomic guidelines. Technical specifications and standards, such as ISO TS/15066 [30], are taken into
account, which provides guidance for the use of robots in collaborative operations based on safety
requirements. ISO TS/15066 integrates the provisions and guidelines on the operation of collaborative
industrial robots indicated in ISO 10218-1 [31] and ISO 10218-2 [32]. The current safety standards related
to the discipline of robotics are actively updated in order to respond to any problems encountered in
working environments.

ISO 12218 is divided into two parts: ISO 10218-1:2011 Robots and robot equipment—safety
requirements for industrial robots; Part 1: Robots; ISO 10218-2: 2011 Robots and robot
equipment—Safety requirements for industrial robots; Part 2: Robot systems and robot integration.

In the first part, a guidance for safety in design, protective measures and instructions about the
use of industrial robots are introduced, describing the basic hazards and providing characteristics
needed to eliminate or, at least, reduce the risks associated with them. The second part specifies
the hazards arising from the integration of industrial robots into production lines and identifies the
minimum safety requirements from undertaken by manufacturer, supplier and user to ensure a safe
working environment.

Going into detail about the type of robots, the standard that concerns specific collaborative robots
is ISO/TS 15066:2016, specifying the safety requirements for industrial collaborative robotic systems
and the working environment. Designers of robotic systems must have full knowledge of current
safety standards and must proceed according to the concept of awareness, fault tolerance and explicit
communication, relying on the needs of research in the safety area [33]. This attention enables to move
scientific progresses achieved in the field of HRI to an industrial level [34].

From ISO 10218 to ISO/TS 15066:2016

Currently, this specification is the most detailed document which gives guidelines about safety
requirements in the field of collaborative industrial robot work cells and it is mainly focused on
mechanical risk.

According to the specification, to ensure a safe collaboration among human workers and robot
systems, mechanical risks must be minimized in order to avoid unexpected contacts in terms of gravity
and/or probability. ISO/TS 15066 introduces four different methods for safe HRI: Safety-rated monitored
stop which provides for the stop of robot motion when an operator enters the collaborative workspace.
Then, only when the operator leaves the zone, the robotic task can automatically resume. Hand guiding
method takes into account the operator that is able to fully control the robot motion by direct physical
interaction. Hence, the operator can guide manually the robotic task, simply by moving the robotic
arm by mean of a tool located at or near the end-effector. The operator can enter in the collaborative
working zone only once the robot has achieved a safety-rated monitored stop condition. For the
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speed and separation monitoring method, the speed and distance among human and robots must be
continuously monitored by means of a control system. Thus, the robot is able to dynamically maintain
a correct combination of speed and distance in order to avoid the possibility of any hazardous motion
which may be the cause for unexpected contacts.

The last one is power and force limiting in which the biomechanical risk of unexpected human–robot
contacts is sufficiently reduced either through inherently safe means in the robot or through a
safety-related control system [35].

Since the case study here-in presented falls within the speed and separation monitoring context,
some additional information is provided below.

In particular, the protective separation distance (Sp), defined in Equation (1), is a function f(.) of:

• the robot-system reaction time (Tr): the time required for detecting the operator, elaborating the
signal and activating the stop;

• the stopping time of the robot (Ts): the time among the start of stop signal and the instant in which
the robot halts;

• the speed of the human worker in direction of the robot’s moving tool (Vh);
• the speed of robot in course of stopping (Vs): the time between the stop signal activation and the

real stopping instant;
• the intrusion distance (C): the distance that a part of the body can intrude into the sensing area of

the robot before it is detected;
• the position uncertainty of the operator in the shared workspace (Zd) and the position uncertainty

of the robot system (Zr):

Sp = f(Tr, Ts, Vh, Vs, C, Zd, Zr) (1)

Thus, while the ISO 10218 describes in general terms the 4 types of collaborative operations, ISO
15066 adds new information to improve the design criteria of a collaborative system. Although not
normative, the technical specification accurately describes the state of the art of safety of collaborative
actions and provides specific guidance for risk assessment. ISO 10218, which focuses on industrial
robots in general, leaves room for ISO/TS 15066, which focuses on collaborative robots and the definition
of requirements to ensure the safety of production operators interacting with robotic systems. A further
step forward is the presence of data on injury levels through the identification of pain thresholds in the
different parts of the body in contact with the robot and the related force and pressure levels that lead
to the improvement of the design of the systems avoiding the exceeding of these thresholds in case of
human–robot contact.

2.1. Methodology

This section proposes the methodology herein used to assess benefits due to the introduction
of robots in work cells in which the current job is completely manual. The procedure is generally
applicable, and it is represented in Figure 1.

The procedure consists of three main steps, each one composed by others sub-steps.
The first step concerns the evaluation of the current job (blue box in Figure 1), which is manually

performed. In particular, the procedure starts by evaluating the methods used to carry out manual
tasks and the related working times. This part of the procedure is assessed by an expert analyst
by means of traditional techniques used to estimate working times. This first evaluation gives the
possibility to identify the parts of the working cycle in which robots can replace humans, preferring
high precision tasks.
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The second step of the procedure (green box in Figure 1) aims to redesign the workstation
layout and redefine the working cycle, by considering the introduction of robots. In detail, robots are
introduced in order to improve the working cycle by reducing working times and increasing the quality
of the performed tasks, thus minimizing the probability to produce defective components. In order
to achieve these results, a redesign of the working cell as well as a redefinition of the working tasks
may be necessary to implement the HRI. Hence, this step requires to take into account the definition
of constraints imposed by both working tasks and by Standards regulating the HRI implementation,
as described in the previous Section 2. Thus, the design of the new working cell and the assignment of
tasks to human and robots can be achieved only once some parameters (Tr, Ts, Vs, C, . . . ) and the kind
of robots have been defined.

The last step of the procedure (orange box in Figure 1) is about the assessment of the new work cell
and working cycle performance by means of simulation. In order to perform the simulation, the real
working environment must be reproduced in a virtual scenario; this implies the implementation of:

1. parts belonging to the real working station (by means, for instance, of CAD files), such as tools,
handling lines, work benches, etc.;

2. digital human models (DHMs) which reproduce the anthropometric characteristics of the
real workers;

3. digital robots, which reproduce the models of robots that will be used, including the kinematics.

Once the simulation environment has been defined, it is possible to assess the desired performance
parameters (such as working times or ergonomics) and to put in evidence eventual critical issues.

3. Case Study

This section focuses on the investigation about HRI application for improving working times and
ergonomics of a working process for composite fuselage panel assembly.

The case study derives from a European Clean Sky Horizon 2020 Project, named “Lean robotized
AssemBly and cOntrol of composite aeRostructures (LABOR)” that is coordinated by Loccioni and
with Leonardo SpA as topic manager. The goal of the project is to redesign a workstation in order
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to implement a HRI for a working cell currently characterized by manual working tasks. In detail,
the new cell provides for the sharing of the same workspace by human and robots. As proposed
in the procedure represented in Figure 1, an investigation was conducted numerically, by means
of simulation.

After assessing the method and times of the current manual workstation (Step 1 of the procedure
in Figure 1), the new solution implementing HRI, was designed by all project partners who have
shared their knowledge in order to achieve the best possible solution for new work cell creation (Step 2
of the procedure in Figure 1). Then, the DT of the new HRI cell was created and simulation was used to
evaluate its feasibility, considering working times and ergonomics (Step 3 of the procedure in Figure 1).

The working cycle in the HRI case was redesigned on the base of the manual one, whose
characteristics were provided by the project leader company. In order to create the new working
cycle for HRI, constraints imposed by ISO 10218 [31,32] and ISO/TS 15066 [30] and the sequence of
operations were considered.

It is worth to note that, in the new configuration, the macro assembling operations remain the same,
even if reorganized in order to ensure the human–robot coexistence. Because of the confidentiality,
sharing of all the assembly cycle subtasks is not allowed; so, in Table 2, only the macro tasks of the
assembly cycle, named Before HRI and After HRI, are described.

Table 2. General aircraft panel assembling operations before and after HRI.

Before HRI After HRI

Operation Code Human Robot Human Robot

OP10
Assembly of shear ties,
frames and aluminum
stringers on CFRP skin

NA
Assembly of shear ties,
frames and aluminum
stringers on CFRP skin

NA

OP20 Drilling the entire
fuselage panel NA NA Drilling the entire

fuselage panel

OP30 Countersinking the
entire fuselage panel NA NA Countersinking the

entire fuselage panel
OP40 Hole inspection NA NA Hole inspection

OP50 Disassembling of
aluminum stringers NA Disassembling of

aluminum stringers NA

OP60 Cleaning of aluminum
stringers NA Cleaning of aluminum

stringers NA

OP70 Deburring of
aluminum stringers NA Deburring of

aluminum stringers NA

OP80 Application of sealant NA Application of sealant NA

OP90 Reassembling of
stringers on skin NA Reassembling of

stringers on skin NA

OP100 Riveting the entire
fuselage panel NA NA Riveting the entire

fuselage panel

NA–Not Available.

As specified in the previous Section 2.1, robots are introduced to improve the quality of performed
operations. Hence, as shown in Table 2, drilling, countersinking and riveting operations are performed
on a carbon-fiber-reinforced polymer (CFRP) panel by robots in HRI configuration due to the high
precision and quality needed, especially for drilling operations, whose tolerances are very strict. In fact,
it has been demonstrated that robots working in specific distance areas (namely best working area) are
able to respect very strict tolerances [36].

The robots selected by the company are the FANUC M 20iA. To satisfy the requirements of the
standard ISO/TS 15066, all the parameters of Equation (1) were considered, assuming Vh and Vs as
constant, even though the speed modulation system proposed in [37] is able to optimize these values,
relying on a risk analysis performed online through a fuzzy inference system.

Figure 2b shows an example of the end effector normalized speed trend as function of the distance
between the robot and the human hands (Figure 2a) when these last are detected according to the
multimodal system proposed in [38]. It is worth to note that the robot has not a 1 or 0 condition of
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speed, but its speed is modulated according to the distance from the worker and even the minimum
separation distance S is adjusted in real time again on the basis of the actual robot and human relative
positions and velocities (see [38] for more details).
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As suggested by the Step 2 of the procedure in Figure 1, also the constraints due to operations
precedencies were considered for each working zone and for the whole fuselage panel in order to
create a feasible working cycle. The typical sequence performed in assembling a fuselage panel is
represented in Figure 3, where operations code reported in Table 2 are represented.
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OP10 is a preliminary operation, not considered for the analyses in this study. In some areas,
the panel is reinforced with aluminum elements (see Figure 4) and the human carries out working
tasks only in these areas. For this reason, in Figure 3, two paths are represented:

1. Path 1 is followed when there are not aluminum elements in the working zone and human
operations are not required;

2. Path 2 is followed when aluminum elements, such as stringers or frames, are in the working zone
and also human operations are required.
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The entire working cycle for HRI was defined by respecting both constraints due to standards and
due to operations precedence and it was simulated in order to evaluate the working times for panel
assembling and ergonomics issues.

Moreover, according to Step 3 of the procedure in Figure 1, the 3D CAD models representing
the new workstation were implemented for simulation in Tecnomatix Process Simulate by Siemens®

software environment.
Figure 4 represents a generic fuselage panel, for privacy reasons. In figure, a zoom of one of

the working sections is represented at the bottom. Here, different working zones are visible, namely
yellow and blue to indicate, respectively, the zones where only robots’ operations are needed (path
1 of Figure 3), and zones where also human operations must be performed (path 2 of Figure 3).
This approach has been used for each section of the panel: robots work in small areas in order to
respect tolerances.

Figure 5 shows a schematic configuration of the workstation in which the human and the robot
share the same working area. For privacy reason, it is not represented the real station, which is
provided with a scaffolding, which allows human to reach far working zones, and one of the two
robots moves on a horizontal support. The panel can rotate as well as shown in Figure 5.

Concerning the worker, a DHM, representing the male P50 of Italian anthropometric database [40],
was set for carrying out manual operations.
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4. Results and Discussion

According to Step 1 of the procedure in Figure 1, the working times of human, in HRI configuration,
were estimated relying on the current manual configuration of the workstation. For privacy reasons, it is
not possible to report the operations’ times, but it can be useful to know that the assembling operations
of the whole fuselage composite panel require about 3 working shifts. The analysis proposed in this
study aims to evaluate if the completion time would decrease in HRI configuration. Moreover, a scale
factor (SF) will be used in order to show the difference between the two configurations, as described in
Table 2.

In detail, without loss of generality, the working time values (T) reported in this section,
is equivalent to the scaled real working time values (RT), according to the following Equation (2):

T = RT × SF (2)

By applying Equation (2), the working time to assemble the whole panel (Ta) is 15 hours.
For estimating the working times in HRI configuration (Step 2 of procedure in Figure 1), about

humans, several studies assess that in presence of robots, which may have predictable or unpredictable
motions [41], humans are negatively influenced by the presence a robot [42,43], so the human working
times for each operation have increased in a range between 10–20% of the estimated time, according to
the type of operation. About the robots, KUKA estimated a mean reduction of working times, when a
task is performed by a robot, of about 30% with respect to humans’ times [44].

Consequently, for the tasks performed by robot (namely drilling, countersinking, inspection
and riveting), the working times (TR) values are assumed to be reduced of 30% with respect to the
previously estimated working time, according to Equation (3).

TR = RT × SF × 0.70 (3)
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Other robots’ operations, such as the referencing of the working zone, the moving times,
the end-effector tool changing times, etc., depend on the robots’ characteristics. On each digital
robot the real robot controller was implemented to define the minimum and maximum linear speeds,
the joints’ rotation speed and other important parameters.

Two types of cycle were implemented to simulate two different assembling scenarios. The first one
cannot be considered as HRI, since the human and robots never work at the same time: when human
is performing a task, the robot is passive and vice versa. In the second case, human and robots share
the same working zone by respecting the constraints imposed by ISO-TS 15066 and their operations
can be performed simultaneously, as shown in Table 3, representing part of the working cycle where
same colors identify operations performed simultaneously.

Table 3. Part of the working cycle in HRI configuration.

HUMAN ROBOT

Operation Description Estimated
Time—T (s)

Working
Area Operation Description Estimated

Time—T (s)
Working

Area

Lifter Positioning 38 Slot 1,
Area 11 Referencing working area 38 Slot 5,

Area 3

Pop Rivets Removal 31 Slot 1,
Area 11

367Stringer Disassembling 51 Slot 1,
Area 11

Deburring of Holes 247 Slot 1,
Area 11

Execute the entire cycle of
drilling, countersinking,
hole inspection, change

tool, fastener installation
and control

Slot 5,
Area 3

Sealant Application 201 Slot 1,
Area 11 Referencing working area 38 Slot 5,

Area 2

367
Stringer Reassembling 51 Slot 1,

Area 11

Clecos Application 76 Slot 1,
Area 11

Lifter Positioning 16 Slot 2,
Area 12

Pop rivets Removal 15 Slot 2,
Area 12

Stringer Disassembling 25 Slot 2,
Area 12

Execute the entire cycle of
drilling, countersinking,
hole inspection, change

tool, fastener installation
and control

Slot 5,
Area 2

Simulations were performed considering both simultaneous and separated working tasks.
The working times of Table 3 consider also the time required for human’s micro-movement,

such as walking, raise an arm, grasp an object, etc., which are implemented in Tecnomatix Process
Simulate, based on MTM (method and time measurement) tables.

Results provided by the simulations are shown in Table 4 where there is a comparison between
the different configurations: only manual, human and robot in sequential performing and HRI.

Table 4. Simulation results.

Only Manual Human–Robot HRI

Time to Assemble (h) 15 8.78 7.86
Reduced Time (h) 0 6.22 7.14

% of Reduced Time 0 41.5% 47.6%

The implementation of robots in the workstation drastically reduces the working time for
assembling the whole panel. This time is furtherly reduced in HRI configuration, where the difference
with the manual configuration is almost the 50%.
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Moreover, other details about HRI configuration are described in Table 5; both human-worker
and robots have downtimes (namely passive time) due to constraints imposed by ISO-TS 15066 and
mechanical constraints.

Table 5. Working time detail for human and robot in HRI configuration.

Active Time (h) Passive Time (h) Interaction Time (h) Passive Time (% )

Human 2.23 5.61 1.04 71.4
Robots 6.67 1.19 1.04 15.1

Some considerations may be done from results reported in Tables 4 and 5:

• Implementation of robots reduces the total working time for assembling the panel;
• Interaction time, i.e., the time during which human and robots work simultaneously, sharing

the same working area, is about 13% of the total time. This can be furtherly increased by
working-cycle optimization;

• Passive time for human is very high, suggesting that one worker may follow the assembling of
more than one panel during the whole working shift;

• Passive times for robots is due to the separation distance imposed by ISO-TS 15066. They depend
on the presence of human in proximity of the robot, according to ISO-TS 15066: These times could
be reduced by working-cycle optimization.

Ergonomics Evaluation

The second analysis was carried out to assess ergonomic performance in HRI configuration.
Generally, ergonomic analysis in manufacturing production processes needs to be performed for

four main factors, cause of injury due to biomechanical overload: (i) working postures, (ii) manual
material handling (MMH), (iii) exerted forces and (iv) repetitive actions. In this case, only the assumed
working postures contribute to biomechanical load, since there are no repetitive actions during the
work shift, as well as no objects weighting more than three kilograms to handle or lift. About exerted
forces, robots perform all drilling and countersinking tasks, which are the only ones for which forces
are required. Thus, also exerted forces may be neglected in ergonomic analysis.

Hence, in order to analyze working postures, Ovako Working posture Analyzing Systems (OWAS)
method [45] was used. OWAS method provides risk assessment for whole body by analyzing postures
assumed by human workers. It assumes four risk classes, identified by four different weights, namely
1, 2, 3, 4.

In particular, weights for each risk class can be defined as follows:

• Risk class 1: no risk;
• Risk class 2: low risk;
• Risk class 3: medium risk;
• Risk class 4: high risk.

The final output of the method is the OWAS index, represented in the following Equation (4):

I = [(a × 1) + (b × 2) + (c × 3) + (d × 4)] × 100 (4)

where a, b, c, d are the observation frequencies for each risk class. Observation frequencies may be
calculated as the number of observations for each class (Nk) divided the total number of observations (N):

k =
Nk
N
× 100 with k = a . . . d (5)

The final score is between 100 and 400. Table 6 represents the worker risk exposure based on the
OWAS index and suggests possible corrective actions for high risk cases.
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Table 6. OWAS index—risk areas.

OWAS Risk Index

Value Risk Exposure Consequences
100 No risk No consequences

101–200 Low risk If possible, improve structural factors or take other
organizational measures

201–300 Medium risk Improve structural factors or take other organizational
measures, rapidly

301–400 High risk Immediate action need to change the operating methods,
the equipment used or the work positions of the workers

Typically, the OWAS procedure also considers the handled weight higher that 10 kg. Since all the
tools handled by human have weight less than 10 kg, the mass does not contribute to the OWAS index.

Another important factor affecting the accuracy of OWAS analysis is the sampling time of DHM
movement. In fact, a great advantage of the analysis performed by using a digital reproduction of
the real workstation is the possibility to vary the sampling time in order to achieve a good tradeoff

between quality of the analysis and computational time. In particular, by decreasing the sampling
time, more positions are acquired and analyzed, but the processing time increases and vice versa.
In this study, a good compromise was achieved by fixing sampling time at 0.05 seconds (20 Hz
frequency). The processing time, considering only human active times, was of about eight hours
(already scaled by SF).

Taking into account SF, Table 7 shows the number of acquisitions falling in each action category
and the observations frequency.

Table 7. Simulation results—OWAS coefficients.

Action Category # of Observations Observations Frequencies % Value

1 114,983 a 93.885%
2 4840 b 3.951%
3 2649 c 2.163%
4 0 d 0.000%

122,472 Total 100%

OWAS index can be calculated applying Equation (4):

I = [(0.93885 × 1) + (0.03951 × 2) + (0.02163 × 3) + (0 × 4)] × 100 = 108.278 (6)

The value of OWAS index falls within the low risk area; hence, there is no need for immediate
corrective actions, but if possible, some organizational measures may be taken to improve the
workstation. Concerning simulation, an important data are that only 7489 observations belong to
action category 2, 3 or 4, corresponding to about six minutes of the human working cycle, highlighting
the fact that occurring of musculo–skeletal disorders is very unlikely for this station.

5. Conclusions

In this study, the potential benefits of HRI was investigated for a real aerospace application.
In particular, a methodology for redesigning a workstation was introduced and a real case study,
in which a composite fuselage panel is assembled by human and robots, was proposed. The safety
requirements and constraints imposed by standard ISO 10218 and ISO/TS 15066 were considered.
In order to verify the feasibility of the approach, a simulation was carried out to evaluate the performance
of the workstation in terms of both working times and ergonomics.

The results show a significant improvement of assembling performances in HRI configuration:
in fact, the total assembling time is reduced of 47.6% with respect to the same activity manually
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performed. Concerning ergonomics, the OWAS index was evaluated and the result demonstrate that
HRI allows the human working in extreme safety conditions, in terms of risk of work-related injuries.
Unfortunately, it has not been possible to compare the obtained results with those of the OWAS index
in the case of manual processing. However, it is presumable that, in this last case, the values are higher,
considering the difficulty in reaching the working areas and the application of forces, together with the
handling of additional loads, especially in performing drilling operations.

Numeric results validation, by means of comparison with experimental results, is not possible
since the physical workstation is still not available. However—as already previously described—the
literature demonstrated that numeric models for simulating manual operations provide results in
agreement with those ones provided by experimental tests [11–15].

Future developments may be focused on the optimization of the sequence of tasks of the working
cycle in order to assess the maximum benefits which can be obtained by employing the HRI solution.
Computational time of the simulation can also be optimized by finding a tradeoff between the number
of acquisition needed and the quality of the ergonomic assessment.
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Abstract. The aerospace manufacturing is looking at ways to change their production
processes in order to improve costs, flexibility and efficiency. The LABOR project, acronym for
Lean robotized AssemBly and cOntrol of composite aeRostructures, aims at introducing robotic
solutions for the assembly line of fuselage panels adopting medium size robots equipped with
smart tools, Human Robot collaboration approach and a distributed software architecture. The
system consists of a jig that holds the panel to be assembled, two 6-axis robots mounted on
moving platforms in order to reach the whole panel and real time measurements to perform the
quality control of the assembled components. The cell automatically performs the referencing
of the robot working area on the basis of the recognition of geometric features of the parts to be
coupled (edges, holes, etc.) through the use of 3D smart inspection tools. After the ”one shot”
drilling and countersinking operations, the hole is processed to guarantee a high standard of
the process. Installation and sealing of the fastener complete the working cycle. Furthermore,
an advanced multimodal perception system monitors the collaborative workspace in real time
for safe human-robot collaboration (HRC) tasks. The project started in March 2018 as part of
the European Clean Sky 2 research program. Three partners - LOCCIONI, UNICAMPANIA
and UNISA – are developing the prototype cell in collaboration with LEONARDO S.P.A. that
is the Topic Manager.

1. Introduction
One of the main challenges in aerospace manufacturing is to increase the level of automation
to improve quality standards, production and efficiency rates and flexibility. These objectives
have been reached by means of a lean and flexible automated solution in replacement of manual
assembly or complex ad-hoc machine constructions and/or high-payload robots.

1.1. The LABOR project
Aeronautical robotic applications adopt quite heavy and big robots equipped with large, usually
multi-functional end effectors (see Section 1.3). LABOR [1] proposes the uses of an assembly jig
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to hold the panel and two medium size 6-axis robots, namely the internal and the external robot
with respect to the curvature of the panel, mounted on linear axes to reach the full length of
the panel. A smart inspection tool allows real time measurements and robot self-adaptation to
the environment in which they move and to the performed operations. Self-adaptive processing
tools for composite structures perform an automatic drilling and fastener insertion, guaranteeing
high accuracy. LABOR significantly lowers costs and makes maintenance and programming easy
through a distributed intelligence architecture.

1.2. The LABOR requirements
The full demonstrator is compliant with a Technology Readiness Level (TRL) 7 and assemblies
a section of fuselage composed of 6 panels containing both windows and doors and divided in a
AFT and FWD sides. The assembly cycle starts by referencing the robot working area on the
basis of the recognition of geometric features of some parts to be coupled (edges, holes, etc.).
Then, a ”one shot” drilling and countersinking operation is performed before applying sealant
on the proper fastener and complete the automatic cycle by installing it on the panel. These
operations are executed on skin shear ties, stringers, intercostal and stringer splices. These
components are assembly in three steps: firstly, they are drilled and countersunk by the robots
and, then, they are manually removed by human workers for further manual operations. Finally,
the workers reinstall the parts on the skin panel and the LABOR cell completes the sealing and
riveting operations. The target cycle time is 30 s per hole (excluding fastener inspection) on
a CFRP and thermoplastic compound panel with 9 mm grip fasteners. The assembly panel
material is a stack CFRP + CFRP or CFRP + Aluminum, with 10 mm maximum thickness.
The positioning tolerance is ±0.2 mm and the normal precision is less than 0.5◦. The system
allows co-working activities when human operatiors enter the workcell to insert and remove
temporary connecting part, to apply sealant by interposition and to remove metal burrs on the
edge of the holes. HRC module is compliant with the current standards as ISO 10218-1/2 [2] [3]
and ISO/TS 15066 [4].

1.3. Related works
According to the Global Market Forecast 2018-2037 [5], there is a strong need to increase
productivity in the aviation industry to reduce the production costs and increase their efficiency
rate. Use of automatic or robotic solutions is very limited especially for regional aircraft
manufacturing lines: the high required positioning accuracy can be guaranteed only by using
external expensive metrology systems. Existing solutions for fuselage assembly are Airbus
A320 [6], Bombardier CSeries Aircraft [7] and FAUB [8] which adopt large robots, heavy end
effectors and expensive measurement systems to compensate the unavoidable calibration errors
and the limited absolute accuracy, making it impossible to realize HRC activities. On the
contrary, in 2017, the VALERI project [9] proposes a mobile manipulator with tactile sensors
for supporting human operators. The use of collaborative robots and physical-contact detection
systems are unsuitable for industrial purposes because they introduce unsafe solutions and
unnecessary production-time loss and low efficiency. Concerning the smart tools, one of the
most multi-functional end effectors for composite aerostructure assemby is the MFEE by Kuka
Systems Aerospace [10] which possesses functionalities compliant with LABOR but, due to its
weight and dimensions, it requires a robot payload higher than 210 kg, as well as, it reaches a
positioning accuracy limited to ±0.5 mm.

2. Workcell Design
The LABOR workcell is shown in Figure 1 and mainly consists of an assembly jig and two 6-axis
robots. The former holds the fuselage panel and is equipped with two motors which rotate
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Figure 1: Final workcell design.

the panel during the assembly process, while the robots are mounted on the two sides of the
panel and are mounted on linear axes. The cell is supplied with an advanced perception system
to monitor the collaborative workspace (see Section 3). There is a Fastener warehouse which
handles up to 8 different fasteners (with variable diameters and lengths), a Drilling tip warehouse
which is a carousel of 15 positions, and a dedicated HRC workstation. Safety fences are installed
to guarantee the operator accessibility. Four dedicated smart tools have been developed.

The external robot handles two different tools (see Figure 2a) that can be exchanged through
a quick tool change system placed on the robot basement:

• Drilling and 2D Inspection Tool : the robot approaches the drill point and performs an
orthogonal alignment with the panel skin through the 3 laser sensors installed around
the drilling nose. An automatic electrospindle is mounted on a linear axis to control the
advancing motion during the drilling task. A vacuum pipe removes powder and chips,
while a force sensor controls the robot during the panel stack clamping. A lubrication
system and two telecentric lens on two 2D cameras have been integrated to perform the
hole and countersink inspection, i.e. fastener flushness, locking ring, stem height, hole and
countersink diameter measurements and absence of burrs check;

• Fastening and sealing tool : the pneumatic gripper has been conceived to hold the fastener
end. The fastener is automatically selected from the Fastener Warehouse and is brought
to the gripper tip through a pneumatic transmission system. The fastener is rotated to
execute the sealing application through a pneumatic rotary actuator. The sealant gun has
been housed into the tool mechanical structure, and connected to the electrical motor that
controls the sealant dispensing. Finally, a structured LED light pattern projector and the
2D camera have been integrated to execute the fastener flushness measurement.

The internal robot handles only one tool that is fixed on the robot flange (see Figure 2b).
The tool is composed of two parts: the counterthrust tool and the 3D internal inspection tool:
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• Counterthrust tool : the main component is the counterthrust rod that has been connected
through to the suction pipe with the cell aspirator;

• 3D inspection tool : the structured LED light pattern projector and the three cameras
composing the tool have been installed on a screw-nut mechanism actuated by the electric
motor. The tool executes the referencing of internal robot with respect to internal panel
features and the installed fastener measurements, i.e. delamination and fastener sleeve
height and diameter measurements.

(a) External robot tools: Drilling and 2d Inspection Tool (left) and Fastening and Sealing Tool (right).

(b) Internal robot tools: 3D Inspection Tool (left) and Counterthrust Tool (right).

Figure 2: External and internal robot self-adaptive tools.

From a software point of view, the main concept of the LABOR architecture is the
development and the integration of different intelligent modules. Each module is an independent
node which manages all the hardware components and it is related to and communicates only
with the HMI module, the cell supervisor. Commands and feedbacks are sent from/to the
HMI modules through an OPC-UA bus, the communication protocol chosen according to its
intrinsic flexibility, adaptability, transparency which have to be fulfilled to satisfy the distributed
intelligence approach. The interaction and communication of each module through the network
allow to build a more complex system and to achieve the final complete task.
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Figure 3: Distributed intelligence architecture.

3. HRC Module
Collaborative robots are typically not used in aerospace manufacturing because of their
maximum payload of 35 kg and their limited force-torque safety function. Using conventional
industrial robots of medium size for a collaborative cell is possible when integrated them with a
safety-rated monitoring system [11]. The LABOR HRC module complies with the robot safety
standards ISO 10218-1/2 and TS 15066 by implementing a Speed and Separation Monitoring
(SSM) scenario. SSM suggests to compute the minimum protective distance, S, by considering
the maximum robot speed, vR, as well as the typical human speed, vH (2000 mm/s):

S = α[(vHTR + vHTS) + (vRTR)] + (B) + (C + ZS + ZR), (1)

where TR is the time required by the system to identify the operator, TS is the time required
for a complete robot stop, C is the intrusion distance, ZR and ZS are the robot and the human
position uncertainties and B is the Euclidean distance travelled by the robot while braking.

While the standard equation 1 not foresees α (i.e., α = 1), the LABOR approach introduces
α representing a scaling factor which evaluates the current risk assessment analysis (see
Section 3.2). Moreover, the adopted solution heavily considers the current vR and vH .

3.1. Related works
Standard optical protection devices use laser scanner technology to separate humans from the
robots [12]. The off-the-shelf devices ([13] and [14]) divide the layout of the shared workspace
into three zones associated with pre-defined, constant robot speeds which are selected according
to the worker distance from the robot. In literature, motion capture systems are combined with
range sensors [15] or artificial vision systems [16] for distance monitoring. This is the most
suitable approach for pure coexistence in a collaborative workspace but the current solutions
are no robust for industrial applications and produce a high percentage of false positives during
the human tracking step, thus producing unnecessary robot stops which get worse production
time. On the other hand, a common approach for the robot speed monitoring consists in using
a reactive motion planning that modifies the pre-programmed path to generate a new collision
free path [17], [18]. Unfortunately, in manufacturing environments it is often required not to
modify the robot pre-programmed path because it can involve violation of some constraints.
Reliable monitoring of the dangerous zone can make the robot slowing down when necessary, as
shown in Section 3.2.

3.2. Reliable human detection and control system solution
The adopted multimodal vision system combines the 3D data, acquired from a depth sensor,
with their thermal information, read from a thermal camera. Details about the whole developed
pipeline have been originally reported in [19]. By merging depth and thermal data through a
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Figure 4: Reliable human detection: the
depth-thermal image (left) read by the CNN
to distinguish human operator from a plastic
mannequin and thermal point cloud (right)
showing the purple sphere belonging to the
human cluster at minimum distance with
respect to the yellow robot sphere.

Figure 5: Relation between d and k; S is the
minimum separation distance computed in real
time as in equation (1)

novel image mapping approach (Figure 4 left), a retrained YOLOv3 [20] convolutional neural
network (CNN) executes a reliable detection of human workers. In real time, a thermal point
cloud computes the separation distance, d, between the human worker and the robot, thus selects
both pR and pH (with its own temperature), the point belonging to the robot surface and the one
belonging to the worker, respectively (Figure 4 right). From this step, the algorithm extimates
vH and vR, i.e. the magnitudes of the instantaneous velocities of these points, projected along
the direction identified by them. By collecting this data, S is computed as in equation 1,
considering the current values of d, vR, vH , the temperature of pH , as well as the current risk
assessment estimated through a fuzzy logic which computes in real time the α value ([0,1]). By
comparing S and d as shown in Figure 5, the control algorithm estimates the scaling factor k
([0%, 100%]) to be directly used as the speed override of all the robot motion instructions. More
details are reported in [21].

Table 1: General aircraft panel assembling operations without and with HRC

WITHOUT HRC WITH HRC
OP CODE HUMAN ROBOT HUMAN ROBOT

OP10 Shear ties, frames and NA Shear ties, frames and NA
aluminium stringers assembly aluminium stringers assembly

on SFRP skin on SFRP skin
OP20 Panel drilling NA NA Panel drilling
OP30 Panel countersinking NA NA Panel countersinking
OP40 Hole inspection NA NA Hole inspection
OP50 Stringers de-assembling NA Stringers de-assembling NA
OP60 Stringers cleaning NA Stringers cleaning NA
OP70 Stringers deburring NA Stringers deburring NA
OP80 Sealant application NA Sealant application NA
OP90 Stringers re-assembling NA Stringers re-assembling NA
OP100 Panel riveting NA NA Panel riveting
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Figure 6: Distances read by the laser sensors during the alignment operation to ensure the
drilling axis is orthogonal to the panel skin (left); clamping forces measured during the panel
stack clamping operation (right).

3.3. Optimization of the collaborative work cycle
To fully exploit the HRC module functionality, the work cycle of the SIDE FWD panel, which
needs the combination of both robot and manual activities, has been redefined with respect to a
fully-automated work cycle (Table 1). The main idea is that the human worker and the internal
robot can work simultaneously on different panel areas. This approach ensures the human safety
by executing the collaborative algorithm described in Section 3.2. Simulated analyses estimate
that the time to manually assemble the panel is around 15 h. LABOR reduces the working
time of about 40% with a standard fully-automated working cycle, while the percentage rises
by using the HRC module (48%).

4. Cooperative control of robots
The application of a clamping force is needed to produce a local stiffening of the panel, in order
not to bend or damage it and to avoid burrs in the interface between the different parts of
the stack during the one-shot drilling operation. This objective has been achieved through the
use of cooperative thrusts from both robots, based on force measurements. The external and
internal robots coordinate themselves to build up the desired clamping force thus realizing the
clamping of stacks of material. Note that the adoption of force sensors allows the monitoring of
forces during the entire drilling process.

The open-loop solution is based on the idea that both the drilling tool of the external robot
and the counter-thrusting tool of the internal one push the panel until a force threshold is
reached. The operation is divided into three thrusts, as shown in Figure 6 (right): the external
robot approaches the panel and applies 30N along the drilling axis in 1.5s, then the internal
robot approaches the panel in the opposite direction by applying 30N in 1.5s and, finally, the
external robot completes the pre-load application till 340N. Note that sensor readings are zeroed
after each thrust to specify only force variations. To guarantee the required hole axis angular
tolerance of ±2 deg, before the clamping force operation, the drilling axis of the external robot is
aligned to ensure normality to the panel surface. The alignment operation rotates the robot tip
around the drilling point by reading the values of the three laser sensors mounted on the drilling
tool till the three distances are inside the required tolerances, as shown in Figure 6 (left).
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5. Conclusions
The paper describes the main requirements of the LABOR project, the main components
of the cell and the operations to be performed, i.e. drilling, sealing, fastening, inspection,
HRC by summarizing the main proposed approaches. Based on these requirements, the
developed drilling, fastening, sealing, clamping, referencing and inspection tools are presented
paying attention to the dimensions of the tools and the number of tool changes required in
order to meet the objectives of the project, i.e. to adopt the concept of lean automation
involving the use of small/medium size robots. Moreover, ergonomics, flexibility and
reduced costs of the overall structure has been described, as well as an overview of the
developed human-machine collaboration system architecture. A video showing the main
functionalities of the LABOR cell is available at https://images.loccioni.com/Share/

142d68f4-49f9-4b46-bb96-621e3440042b.
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Abstract—The paper investigates the problem of controlling
the speed of robots in collaborative workcells for automated
manufacturing. The solution is tailored to robotic cells for
cooperative assembly of aircraft fuselage panels, where only
structural elements are present and robots and humans can share
the same workspace, but no physical contact is allowed, unless it
happens at zero robot speed. The proposed approach addresses
the problem of satisfying the minimal set of requirements of
an industrial Human-Robot Collaboration (HRC) task: precision
and reliability of human detection and tracking in the shared
workspace; correct robot task execution with minimum cycle time
while assuring safety for human operators. These requirements
are often conflicting with each other. The former does not
concern with safety only but also with the need of avoiding
unnecessary robot stops or slowdowns in case of false positive
human detection. The latter, according to the current regulations,
concerns with the need of computing the minimum protective
separation distance between the human operator and the robots
by adjusting their speed when dangerous situations happen. This
paper proposes a novel fuzzy inference approach to control robot
speed enforcing safety while maximizing the level of productivity
of the robot minimizing cycle time as well. The approach is
supported by a sensor fusion algorithm which merges the images
acquired from different depth sensors with those obtained from
a thermal camera, by using a machine learning approach. The
methodology is experimentally validated in two experiments, the
first one at lab-scale and the second one performed on a full-
scale robotic workcell for cooperative assembly of aeronautical
structural parts.

Note to Practitioners—The paper discusses a way to han-
dle human safety specifications vs. production requirements
in collaborative robotized assembly systems. State-of-Art (SoA)
approaches cover only a few aspects of both human detection
and robot speed scaling. The present research work proposes a
complete pipeline which starts from a robust human tracking
algorithm and scales the robot speed in real time. An innovative
multimodal perception system composed of two depth cameras
and a thermal camera monitors the collaborative workspace. The
speed scaling algorithm is optimized to take on different human
behaviors during less risky situations or more dangerous ones to
guarantee both operator safety and minimum production time
with the aim of better profitability and efficiency for collaborative
workstations. The algorithm estimates the operator intention
for real-time computation of the minimum protective distance
according to the current safety regulations. The robot speed is
smoothly changed for psychological advantages of operators, both
in case of single and multiple workers. The result is a complete
system, easily implementable on a standard industrial workcell.
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I. INTRODUCTION

ROBOTS of the future should be employed safely, intelli-
gently and adaptively in many automated manufacturing

environments. Humans and robots have to interact and com-
municate effectively and efficiently during their movements
in order to maximize the system productivity and preserve
operator safety at the same time. To achieve such challenging
objectives, a perception system is needed for monitoring hu-
man presence reliably, and suitable control algorithms should
be devised to select the proper robot behaviour for keeping
a high level of productivity in a collaborative scenario. This
paper leverages machine learning techniques based on a mul-
timodal perception and a novel sensor fusion algorithm for
human tracking, as well as a fuzzy control logic to detect the
proximity and the speed interaction between human operators
and robots in real-time.

A. Context and motivations

The research work is carried out in the framework of the
LABOR European project [1], which has the objective to
propose novel robotized assembly paradigms of aircraft fuse-
lage panels by integrating human capabilities in a robotized
assembly system. Until recently, the aerospace industry was
still conservative and companies tended to use successful
assembly methods that had already been proven to work in
the past. Nowadays, many assembly sub-operations try to
exploit robotics, e.g., drilling, fastening and sealing tasks.
These operations are no longer manually performed by human
operators but by industrial robots equipped with dedicated
tools or by large automated machines devoted to assembly
of specific parts. However, there are some operations which
require human capabilities and that must be executed by
operators in coexistence with robots. An example in this
context is [2], where humans and robots collaborate to perform
installation applications inside the fuselage. This is also the
case of hybrid metal and composite structures, where, after the
drilling operation, some parts have to be manually removed for
further manual operations, like deburring, and then re-installed
on the skin panel before the sealing and riveting operations, as
shown in Fig. 1. Automated assembly applications demonstrate
that the greatest advantage brought by collaborative robots lies
in the opportunity to combine the advantages of automation
with the flexibility and soft skills of human workers. These
systems also prevent workers from tedious, complex and
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Fig. 1. Example of a manual assembly operation: the operator removes the
blue element from the panel for the execution of deburring operations.

ergonomically not feasible jobs and increase productivity of
the industrial process. Specifically, traditional industrial robots
continuously perform the same tasks and reach levels of
accuracy, speed and repeatability which are impossible to be
achieved by humans. However, they lack in versatility and
cannot efficiently adapt to dynamic working environment or
changes in production.

Preliminary versions of the approach proposed in this paper
have been originally reported in [3] and [4]. The present paper
extends those works by proposing a new fuzzy control strategy
and an improved perception pipeline to further reduce cycle
time, it presents new challenging case studies and counterex-
amples to support the solution, finally, it adds implementation
details to make the proposed strategy fully reproducible.

B. Classification of safety standards

Safety is the fundamental prerequisite in the design of
human-robot collaborative workplaces. The International Or-
ganization for Standardization (ISO) 10218-1 [5], 10218-2 [6]
outline some methods for safe collaborative work and ISO/TS
[7] supplements them and provides additional guidance for
safety in HRC. The safety standards address four collaborative
scenarios, i.e.: Safety-rated Monitored Stop, Hand Guiding,
Speed and Separation Monitoring (SSM) and Power and
Force Limiting. In the SSM scenario (the one selected in this
application), the safety is ensured by maintaining at least the
protective separation distance between the operator and the
robot all the time (the slower the robot speed is, the smaller
separation distance is allowed and, if the separation distance
decreases below the minimum protective separation distance,
the robot has to stop).

The safety collaborative scenarios can be divided into
two categories: post-collision and pre-collision [8]. A post-
collision system reacts after the physical impact occurs be-
tween the robot and the operator. In this case, the collision
could be dangerous if the robot limits are poorly defined or
when the robot is equipped with sharp tools, e.g., drilling tools;
moreover, any collision stops the task execution, thus affecting
production time. Human safety can be assured by minimizing
the energy transmitted during the contact [9], [10] by using
robots endowed with sensors for assessing force exchange
when the impact occurs, e.g., force or tactile sensors [11],
or by using only proprioceptive measurements in case of

industrial manipulators With closed control architecture [12].
On the other hand, a pre-collision scheme makes use of
exteroceptive sensors to detect humans and prevent collisions.
Motion capture systems combined with range sensors [13] or
artificial vision systems [14] are crucial in the case of distance
monitoring, used in workspaces with human-robot coexistence
only. The dangerous zone around the robot is monitored and
any operator that accesses it makes the robot slowing down,
until a full stop when the human is too close.

Industrial safety requirements do not permit to use post-
collision systems, therefore, this paper presents a novel pre-
collision strategy based on the SSM scenario, that means no
physical contact is allowed between the robot and the operator,
unless it happens at zero robot speed. Two main methods have
been developed and integrated: Safety Through Prediction
(STP) and Safety Through Control (STC). STP is based on
the use of a multimodal perception system (depth and thermal
camera) for a reliable detection of human operators. This has
been pursued by tracking separation distance and by predicting
human actions and motions. STC includes a strategy to prevent
collisions by defining safety regions, according to the current
regulations, and designing control actions to decrease robot
speed only when indispensable, depending on the actual risk
of collision.

1) Safety through prediction: Localizing human operators
robustly requires to fuse several sensors with different physical
properties [15], [16], [17]. The present paper makes use of
a thermal camera to find humans into the observed scenario,
which have a surface temperature around 37◦ C. The reason of
choosing this type of sensor is related to its intrinsic principle
of robustly identifying and distinguishing temperature data
also when illumination and viewpoint change. Unfortunately,
thermal camera does not support depth information for the
separation distance measurement required by the current regu-
lations. This paper demonstrates that a robust real-time human
detection strategy can be obtained through a multimodal
perception system which combines 2D thermographic data and
3D depth information. The approach can be classified as a
device-free technology and compared to other methods of the
same class, e.g., those based on radio frequency transceivers
[18], [19], is able to detect body parts with a higher level of
detail and better accuracy.

Section III-A gives emphasis to the novel extrinsic camera
calibration procedure. Section V provides experimental results
to prove the effectiveness of the proposed method and com-
pares the proposed solution with some SoA strategies. Finally,
the pipeline which computes the points at minimum distance
has been strengthened by adding a new step which produces
a thermal point cloud to distinguish points belonging to the
human body surface from the tools held by the worker. This
information will be taken into account by the control system
to better handle the robot speed modulation according to a risk
analysis.

2) Safety through control: The main objective of the pro-
posed method is to scale down the robot pre-programmed
speed when a real and imminent danger of collision between
the robotic system and a human worker occurs. The operator
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safety is assured by analyzing his/her behaviour when entering
the collaborative workspace and by quantifying the level of
risk to which he/she is exposed during the task execution.
This analysis is complex due to the extreme variability and
unpredictability of human behaviours.

A first known approach usesa reactive motion planning
that modifies the pre-programmed path to generate a new
collision free path [20], [21]. Unfortunately, in manufacturing
environments it is often required not to modify the robot pre-
programmed path because it can involve violation of some of
the production constraints. This paper presents a methodology
to generate an optimal motion taking into account both safety
and production constraints. A novel distance-controlled veloc-
ity strategy is introduced, which adapts the robot speed on an
assigned path, not only to the perceived distance with respect
to the closest human worker, as suggested by the current
regulations, but also with respect to the relative position
and velocity of the operator and the robot used in the risk
assessment analysis. The recent paper [22] proposes a general
framework for computer-aided risk assessment based on a
temporal logic language. It deals also with the SSM method
as a risk reduction measure, however the robot is slowed
down based on fixed thresholds for the protective distance.
Whereas, the method based on the FIS proposed here generates
a smoother modulation of the protective distance S; moreover,
the risk assessment rules can be specified in natural language
rather than in a formal one.

In [3] and [4] the risk is assessed only on the basis of the rel-
ative position and velocity, here the risk assessment algorithm
takes into account also the thermal information of the selected
point at minimum distance belonging to the worker. This
new input has been introduced to better distinguish dangerous
situations for the workers from cases of possible collisions
with nearby obstacles, typically tools used by the worker.

C. Paper contributions
The paper discusses solutions to handle safety specifications

vs. production requirements in HRC environments. Although
several works about the same topic exist, to the best of the
authors’ knowledge, none or just few of the aforementioned
approaches cover all the relevant challenges in an exhaustive
manner or have been explicitly designed to be consistent with
the production requirements, aiming at maximizing the overall
throughput. The main contributions of the present research
work are
• development of a reliable human detection through a

multimodal perception system with depth and thermal
cameras able to handle multiple workers (see Section III);

• definition of a new thermal point cloud to distinguish
human body parts from handheld tools, used to separate
less risky situations from more dangerous ones;

• development of a fuzzy-based risk analysis to correctly
evaluate dangerous situations and avoid unnecessary
robot stops (see Section IV-A);

• development of a strategy which properly identifies the
points at minimum distance considering all parts of the
human bodies and all links of the robot (see Section
III-C);

• real-time adaptation of the minimum protective separation
distance defined in the current regulations on the basis of
the risk analysis (see Section II and Section IV-A);

• development of an intention estimation predictive tech-
nique through real-time estimation of human velocity
based on a Kalman filter (see Section III-C).

II. ASSESSMENT AND MEASURE OF THE RISK IN
COLLABORATIVE ENVIRONMENTS

The ISO 10218-1/2:2011 underlines the importance of haz-
ard identification and set the mandatory requirements of risk
assessment, especially for collaborative robots and for those
operations that dynamically involve the operator and the robot,
as in SSM scenarios. The ISO TS 15066 provides additional
information and further guidelines to evaluate the risk related
to the four types of collaboration modes (see Section I-B). As-
suming as fundamental requirement a maximum safe reduced
speed of 250 mm/s over the collaborative operations [6], it
presents the acceptable physical quantities for the collaborative
modes of SSM, such as the allowable minimum protective
separation distance, S, between the human operator and the
robot.

The ISO TS 15066 suggests to compute S by using the
relation

S = vHTR + vHTS + vRTR +B + C + ZS + ZR, (1)

where

• vH represents the maximum speed of the closest operator
and it is assumed as 2000 mm/s with the option to use
1600 mm/s when S > 500 mm;

• vR is the maximum robot speed;
• TR is the time required by the machine to respond to the

operator presence;
• TS represents the response time of the machine which

brings the robot to a safe, controlled stop;
• C is the intrusion distance safety margin, which rep-

resents an additional distance, based on the expected
intrusion toward the critical zone prior to the actuation
of the protective equipment;

• ZR is the robot position uncertainty;
• ZS is the operator position uncertainty (i.e., the sensor

uncertainty);
• B is the Euclidean distance travelled by the robot while

braking.

The rational behind this choice is that, during the robot motion,
the robot never gets closer to the operator than S. When the
Euclidean separation distance, d, is equal to or less than S, the
robot system stops, before it can impact the operator. When
the operator moves away from the robot, this can resume the
motion automatically while maintaining at least the minimum
protective separation distance.

This metric is only suggested but it is not mandatory, since
the regulation allows the user to adopt different metrics based
on a documented risk analysis. The present work starts from
the suggested metric (1) and tries to improve some aspects



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL.X6, NO. Y, MONTH 2019 4

to optimize the production time. To this aim, S has been
redefined as follows

S(t) = α(t)[vH(t)TR+vH(t)TS+vR(t)TR]+B+C+ZS+ZR,
(2)

where α(t) is a scaling factor, which can be evaluated accord-
ing to a suitable risk assessment analysis, and vH(t) and vR(t)
are the magnitudes of the instantaneous velocities of the points
at minimum distance belonging to the human operator and the
robot, respectively, projected along the direction identified by
these two points (see eqs. (13) and (14)). The actual value
of α will also take into account if the robot and the human
are approaching or they are moving away (see end of Section
III). The scaling factor can assume values in the interval [0, 1]:
α should be close to 1 when the current situation is actually
dangerous for the worker and it is necessary to follow the
TS suggestions, whereas α can take smaller values when the
current situation is less risky for the operator, so it is possible
to relax the constraints given by TS. In addition, the velocity
values are not constant as suggested by TS, but they are
estimated in real time to properly adapt the estimation of S
to the current scenario.

III. SAFETY THROUGH PREDICTION

The perception of the presence of human operators inside
the collaborative workspace must be extremely reliable and
ensure human safety in every situation. For the computation of
the minimum distance, it is possible to geometrically represent
the robot simply as its tool center point (TCP) or as a kine-
matic chain of primitive shapes like spheres or ellipsoids [23].
Usually, the human body is represented as a parallelepiped
object [24] or as a stick figure using colour markers on the
clothes and skeletal trackers [25], [26]. Considering only the
TCP might prevent reaching the desired safety level since
collisions with other links of the robot are not taken into
account. In this paper, the whole robot is modeled through
a virtual 3D model, by drawing dynamic bounding spheres
around each link that follow robot movements in real time. The
human operators are observed by capturing real images from
a multimodal perception system that provides a point cloud
representation enhanced with temperature information. In this
way, the measurement of the separation distance between the
3D robot model and the closest human operator considers the
whole body surface, thus ensuring a higher degree of safety.

A. Experimental setup configuration

The experimental setup demonstrates that the use of multi-
ple sensors can involve advantages for the workspace moni-
toring. Two depth cameras have been adopted to solve the risk
of occlusions: the Microsoft Kinect v1 and the Intel RealSense
D435. At the same time, a sensor fusion technique with a
thermal camera has been developed to decrease the false
positive detection. The Optris PI 450 thermal camera has been
rigidly attached to the Kinect depth camera and they have been
arranged in a way that their optical axes are aligned. Fig. 2
shows an image of the setup.

Fig. 2. Multimodal perception system: two depth cameras and a thermal
camera for monitoring the collaborative workspace.

1) Depth-Depth camera calibration: The intrinsic calibra-
tion of the depth cameras has been necessary to adjust the
default intrinsic parameters. It is carried out using a stan-
dard procedure and a chessboard pattern [27]. The extrinsic
calibration has been necessary to obtain the homogeneous
transformation matrices, T b

d1
and T b

d2
, which express the

poses of the depth camera frames with respect to the robot
base frame. In literature, this problem is solved by different
calibration procedures, especially for object recognition ap-
plications. Their typical target is to recognize objects located
at about 0.5 m from the camera frame. On the contrary, for
a typical industrial environment, the robot and the operators
work in a large workspace and more than 2.5 m far from the
camera. Therefore, a new sphere-tracking extrinsic calibration
procedure for depth cameras has been proposed.

A red polystyrene sphere has been mounted at the robot
TCP, so as to match the center of the sphere with the origin
of the known end-effector frame, as shown in Fig. 2. The
calibration procedure is based on the M-estimator SAmple
Consensus (MSAC) algorithm [28] which is an extension
of the well-know RANdom SAmple Consensus (RANSAC)
algorithm [29]. The original depth images are converted into
point clouds [30] and MSAC estimates the geometric model
of the sphere, satisfying a constraint on the sphere radius
dimension. The robot configuration must guarantee that the
sphere can be properly visible in both camera images, without
using RGB data (see Fig. 3). For each robot configuration, the
forward kinematics computes the center sphere pose. A cost
function combines the estimated poses from both cameras and
evaluates T b

d1
and T b

d2
. The mean positioning error achieved

by applying this calibration procedure is about 0.015 m for the
Kinect camera and 0.042 m for the Intel one, against 0.10 m
achieved by using SoA techniques, due to the large monitored
workspace at hand (20m3).

2) Depth-Thermal camera calibration: The software
adopted for the thermal camera intrinsic calibration [27] needs
a perforated grid with a circular pattern. A novel extrinsic
calibration procedure has been proposed in this paper to define
the thermal camera pose with respect to the depth camera.

In [31] and [32] a thermal camera and a depth camera are
extrinsically calibrated by using a perforated grid placed in
front of the sensors. These procedures assume that the target



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL.X6, NO. Y, MONTH 2019 5

Fig. 3. Depth camera extrinsic calibration procedure: the original depth
images (top) are converted in point clouds (bottom) to allow MSAC to estimate
the sphere model pose by finding the correspondences, i.e., the inliers (red
points).

is located close enough to the sensor lenses, at about 0.5 m.
These assumptions could not be met in the application scenario
at hand, due to the large distance at which the camera should
work.

The solution consists in using three heated spheres attached
to a flat cardboard support placed far from the camera, where
the human operators are expected to work. This assumption
guarantees that the calibration output provides an accurate
correspondence when the two images are overlapped. Note
that if the two cameras have different fields of view (FOV),
the flat cardboard support must be placed carefully inside the
common view.

To estimate the transformation matrix T d1
t , between the

depth camera frame Σd1
and the thermal camera frame Σt, the

spheres have been moved inside the collaborative workspace.
The coordinates pd1

k =
[
xd1

k yd1

k zd1

k

]T
of the kth center of

the target sphere have been directly calculated from the depth
image, while the corresponding thermal point coordinates have
been calculated from the thermal image, assuming the distance
from the lens equal to the depth value, i.e., ztk = zd1

k , and

xtk =
(ak − cxt)z

t
k

fxt

, ytk =
(bk − cyt)z

t
k

fyt

, (3)

where ak and bk are the pixel coordinates of the sphere center
in the thermal image, cxt

, cyt
are the pixel coordinates of

the thermal image center and fxt
, fyt

are the focal lengths
expressed in pixel-related units. Finally, the transformation
matrix T d1

t has been estimated by minimizing a cost function
that combines the corresponding data.

B. Human Detection and Tracking

An innovative Convolutional Neural Network (CNN), which
merges spatial and thermal data, is presented to detect human
workers. Introducing a novel representation consisting in a
RGB-D point cloud, two pipelines have been implemented:
the Segmentation Pipeline and the Sensor Fusion Pipeline.

Fig. 4. Segmentation pipeline: the original depth images (step A) are
processed by removing the robot model (step B) and then subtracted to the
static background to recognize dynamic entities (step C). The corresponding
point clouds (step D) are merged and processed to divide the entities into
independent clusters (step E).

1) Segmentation Pipeline: The first step of the proposed
segmentation pipeline is subtracting the static environment
from the original depth image in order to process exclusively
dynamic entities. This idea simplifies the point cloud to be
analyzed, because unnecessary points are discarded. Fig. 4
shows five main steps which are detailed below.

Step A shows that the original depth images contain not
only the robot surroundings but also the robot itself. This
means that the moving robot could be classified as a dynamic
entity. The Real-time URDF Filter [33] package identifies the
pixels belonging to the robot model and assigns them a Not-
a-Number (NaN) value (step B). At this point, the background
filtering can be made: every dynamic entity which enters the
collaborative workspace is now recognized into the processed
depth image.

The second part of the segmentation pipeline makes use
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Fig. 5. The proposed pixel-by-pixel mapping technique to find correspon-
dences between the depth image and the thermal image: the result is a
382× 288 matrix.

of point cloud data (PCD) which the two depth images are
converted to (see step D). Chosen a depth camera as the
reference one, the PCDs are expressed relative to the same
camera frame. Step E (left) shows the next point cloud merging
phase which demonstrates the accuracy reached during the
extrinsic calibration procedure (Section III-A1). Finally, a
clustering process (step E, right) provides as many clusters as
single dynamic areas are detected in the foreground. The step
uses an Euclidean cluster extraction method. The image shows
three detected dynamic clusters colored by random colors and
visualized in RViz together with the robot model.

2) Sensor Fusion Pipeline: The sensor fusion pipeline
strength is the CNN trained on images obtained by combining
both depth and thermal data. The approach guarantees robust
human detection in real time with very low sensitivity to
lighting conditions owing to the combination of the two image
sources and it consists in four key phases described in the
following.

Phase 1: depth-thermal mapping. The extrinsic calibration
explained in Section III-A2 is the first step towards a correct
mapping, that means finding correspondences between the
depth image and the thermal image. Since the adopted cameras
have different FOVs and resolutions, the resulting map size
must correspond to the smallest one. According to the experi-
mental setup shown in Fig. 2, the mapping procedure builds a
382×288 matrix. The mapping phase has been solved through
a pixel-by-pixel procedure as shown in Fig. 5: the pixel of the
depth image, of indices (m,n), contains the depth value, zdm,n,
which is read to compute the corresponding Cartesian point
pd
m,n =

[
xdm,n ydm,n zdm,n

]T
, similarly to (3),

xdm,n =
(m− cxd

)zdm,n

fxd

, ydm,n =
(n− cyd

)zdm,n

fyd

. (4)

The Cartesian point is then expressed with reference to the
thermal camera frame through the relation[

pt
m,n

1

]
= T t

d

[
pd
m,n

1

]
. (5)

Using the intrinsic parameters of the thermal camera, the
corresponding pixel indices of the point pt

m,n into the thermal

image (a, b) are finally computed by inverting (3). If they are
contained in the FOV of the thermal image, the corresponding
depth pixel indices (m,n) are written into the mapping matrix
at the indices (a, b); otherwise, they are discarded because they
are outside the common view.

Phase 2: sensor fusion. The most widely used image fusion
algorithms [34] combine the sources of information into a
single gray scale image with suitable weights defined by the
user. Here, the depth and thermal information are combined
with the aim to preserve the integrity of the information
contained in the two sources. The user maps the entire depth
image into a specific RGB channel and the entire thermal
image into a different one. Thus, the CNN in the next step
defines the correct weights to the two channels of the resulting
RGB image, during the training phase.

The proposed novel approach is called RGB Mapping Ap-
proach (RGB-MA) and consists in defining the intensities of
RGB channels starting from the spatial and thermal values for
every common pixel. The RGB-MA strength is that the user
does not need to assign a priority to the input sources, this is
indirectly done by the CNN training phase.

Fig. 6 shows five main steps to demonstrate the use of
the RGB-MA. The original images acquired from the depth
camera and from the thermal camera (step F) are normalized
(step G) before being mapped on the green channel and the
red one, respectively, as shown in step H. More in detail, the
original depth sensor value, sd, and the corresponding temper-
ature sensor value, st, are normalized according to a predefined
interval. Specifically, for the thermal camera, mint = 30◦ C
and maxt = 40◦ C which represent the temperature interval for
human surface detection; for the depth camera, mind = 0.5 m
and maxd = 6.0 m which are the sensor depth ranges. At this
point, the color information inserted into the specific channel
of the (i, j)th pixel of the output image must be mapped to 8
bits. The Ri,j (red) value is computed by acquiring sti,j from
the thermal image, as

Ri,j = round
(

255
sti,j −mint

maxt−mint

)
; (6)

the Gi,j (green) value is computed by acquiring sdm,n from the
depth image, where m and n are contained into the (i, j)th
value of the mapping matrix,

Gi,j = round

(
255

sdm,n −mind

maxd−mind

)
; (7)

the B (blue) value of the resulting image is always zero. A
sample resulting image is shown in step I (left).

Phase 3: DT-CNN for human detection. The framework
adopted for real-time human detection is YOLOv3 [35], as
detailed in the previous version of this work. YOLOv3 is
an off-the-shelf SoA 2D object detector pre-trained on Im-
ageNet [36] and fine-tuned on the MS-Coco [37] data-set.
It is an extremely fast and accurate object detection system,
which is born to detect semantic objects of a certain class,
e.g., humans, buildings and cars, in standard RGB images.

Nowadays, there are no neural networks which have been
trained on combined images such as those proposed by this
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Fig. 6. Sensor fusion pipeline: the depth image and thermal image (step F)
are normalized (step G) before being mapped on the green and red channels
(step H). RGB-MA allows to robustly detect human workers (step I) and the
pose estimation is useful to distinguish human and not-human clusters (step
L).

paper, so the YOLOv3 CNN model has been re-trained.
Therefore, after the definition of a Person class, the training
data-set is built by acquiring frames from the fused D-T video
stream. About 1000 frames have been manually labelled using
the Yolo labeling tool and used to retrain the YOLOv3 CNN
to obtain the estimated weights. After the training step, all
pre-trained classes other than the Person class are excluded
from the prediction and the CNN is executed on the real-time
Depth-Thermal (DT) video stream for the human detection.
A bounding box is drawn around each detected human (see
step I of Fig. 6, right). Note that both the training and the
prediction process need high computational cost and they are
executed on a proper GPU (NVIDIA Titan V). Some details
are reported in Section V.

Phase 4: human validation check. The human validation
check is the last phase of the Sensor fusion pipeline. It

collects the clusters provided by the Segmentation pipeline
and the bounding box coordinates provided by the DT-CNN
to distinguish human clusters from not-human ones.

The phase needs to transform each cluster point to the
corresponding depth pixel coordinates, by inverting (4). The
bounding box, originally expressed in thermal camera frame,
is converted into depth camera frame through the use of the
mapping matrix. If at least 70% of the cluster points are within
the bounding box coordinates, the cluster is labeled as Human
and passes the check. Step L (left) of Fig. 6 shows a clear
example in which the validated human cluster is colored in
red and the not-human plastic mannequin is yellow.

C. Human-Robot closest points
The human clusters provided by the sensor fusion pipeline

must be processed to obtain the fuzzy inference system inputs.
The clusters are converted into RGB-D point clouds which
contain both spatial and temperature data. Then, a novel al-
gorithm identifies the points at minimum distance through the
computation of the Human-Robot separation distance. Finally,
a Human-Robot speed estimation procedure is developed to
compute the speed of the robot and the closest human in real-
time.

1) RGB-D point clouds: The main idea in this step is
that not all the points of a cluster could actually belong
to the body surface. When the worker holds a tool for his
manual operation, the tool is also included into the identified
human cluster. Thermal information can distinguish the points
representing the tool from points belonging to the human
body surface inside the single cluster. This consideration led
the authors to use a thermal point cloud: every point of
the cluster is represented not only by its position but also
by a RGB color depending on its own temperature. The
color scale is between green (temperature value below or
equal to 25◦ C) and red (temperature value above or equal
to 40◦ C), as shown in step M of Fig. 7. When the point at
minimum distance from the robot is identified as described in
Section III-C2, the purple sphere in step N of Fig. 7 contains
also its temperature value. This information is sent to the fuzzy
inference system (Section IV-A), which distinguishes if the
point actually belongs to the body surface or to an handheld
tool. In the latter case, assuming the operator is not handling
a dangerous tool, the minimum protective distance can be
slightly reduced to improve the production time, because an
impact of the robot with the tool is considered potentially less
hazardous to the worker than a direct impact with the body
surface. The effect is that the robot speed is decreased less if
the point at minimum distance does not belong to the human
body surface. It is important to remark that a collision is still
not allowed, as required by the SSM scenario.

2) Human-Robot separation distance: The last step to
compute the separation distance between the robot machine
and the human worker is to identify the nearest pair of points,
one belonging to the robot (PR) and the other one belonging
to the operator (PH ), that minimize the distance, i.e.,

PH ∈ H, PR ∈ R | d(PH , PR) ≤ d(P ′H , P
′
R)

∀P ′H ∈ H, P ′R ∈ R,
(8)
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Fig. 7. RGB-D point cloud: step M shows the thermal point cloud which is
obtained by associating each point to its own temperature information read
by the thermal camera. The RGB color is chosen by using a color scale from
green (temperature value below or equal to 25◦ C) to red (temperature value
above or equal to 40◦ C). The purple sphere of step N, which represents the
point at minimum distance from the robot, keeps its temperature value which
is sent to the fuzzy inference system to properly ass the risk.

where d(·, ·) is the Euclidean distance between two points, H
and R represent the set of all points that belong to the operator
and the robot, respectively.

The whole robot is modeled through a virtual 3D model,
by drawing real-time bounding spheres around each link as
in [38] and [39]. Therefore, the pair of closest points can be
immediately identified: the algorithm calculates the distance
between all points of the human cluster point clouds and the
origin of every robot frame. The robot point PR will be on
the closest virtual sphere along the line connecting the origin
with PH . Step N of Fig. 7 shows the result.

3) Human-Robot speed estimation: Intention estimation
means the prediction of human motion. It consists in estimat-
ing the next position and velocity of the trajectory performed
by the operator on the basis of a series of positions previously
acquired.

The adopted strategy is based on a standard Linear Kalman
Filter (LKF), which tries to solve the problem of estimating
the state of a discrete-time process governed by the equations

xk+1 =

[
I3 ∆tI3
O3 I3

]
xk + wk, (9)

yk =
[
I3 O3

]
xk + nk (10)

where ∆t is the sampling time, I3 and O3 are the identity
and zero matrices of size 3× 3, respectively; wk and nk are
the process and measurement noises with covariance matrices
W and N , respectively. Finally, x is the state vector of the
system, i.e., the position and the velocity of the operator
x =

[
pT
H ṗT

H

]T
, and the measured output yk is a vector

containing the coordinates of the point PH described in
Section III-C1. The covariance matrix N is experimentally
estimated, while the covariance matrix Q has been chosen as

Q =

[
I3∆t2 O3

O3 Q2

]
(11)

where Q2 quantifies the uncertainty on the velocity dynamics
(assumed constant) of the state equations.

Based on the vector nature of the velocity, it is possible to
make some considerations about the direction (trend) of the
operator, that is to say, to predict in which direction he/she is
travelling to.

On the other hand, the linear velocity ṗR of the point on
the robot closest to the operator can be computed according
to the differential kinematics equation

ṗR = Jp(q)q̇, (12)

where q and q̇ are the robot joint position and velocity vectors,
respectively; while, Jp is the position part of the Jacobian
matrix calculated till the closest point.

As described in Section II, ISO TS 15066 suggests to com-
pute a constant value for the minimum protective separation
distance S. Unfortunately, the equation (1) does not distinguish
situations during which the robot and the operator are going
away from each other or they are approaching. However, the
novel proposed equation (2) represents vH as the operator
speed in the direction of the moving part of the robot and
vR as the robot speed in the direction of the selected operator.
Therefore, the velocity terms of (2) can be computed as

vH =

∣∣∣∣ ˙̂pT
H

(
pR − p̂H

‖pR − p̂H‖

)∣∣∣∣ (13)

vR =

∣∣∣∣ṗT
R

(
p̂H − pR

‖p̂H − pR‖

)∣∣∣∣ , (14)

where p̂H and ˙̂pH are the operator position and velocity esti-
mated by the LKF, respectively, and pR is a vector containing
the coordinates of the point PR defined above.

IV. SAFETY THROUGH CONTROL

In literature there are a lot of proposed methodologies to
reduce the robot speed in SSM scenarios, according to certain
metrics. Defining these metrics is a crucial step as the main
purpose is to achieve the best trade-off between the operator
safety and the robotic cell productivity. An innovative fuzzy
logic approach controls the robot speed by monitoring the
relative distance between the robot and the human operator
and by taking into account risk assessment considerations.
Note that the adopted metric does not generate a discretized
decision, but a continuously modulated speed scaling factor.

A. Fuzzy Inference System

To improve the production time, the minimum protective
separation distance has been redefined as in (2), where α is a
scaling factor which can be selected by means of considera-
tions about hazards for the workers.

To choose the value of α, thus to define the risk, a Fuzzy
Inference System (FIS) has been designed. FIS is a well-
known method that provides a basis for a qualitative approach
to the analysis of complex systems in which linguistic, rather
than numerical, variables are employed to describe system
behaviour or to encode the a priori knowledge into a com-
putational system. Another characteristic of the fuzzy logic is
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Fig. 8. Critical scenarios can be distinguished by considering both ḋ and
ṗT
R
˙̂pH . When the two entities are getting closer to each other and travel

along opposite directions, a high hazard risk is occurring. On the contrary,
when they are moving away from each other but they travel along the same
direction, the risk level is intermediate. Only when they are moving away
from each other, travelling along opposite directions, the risk level is low.

that each proposition of a FIS possesses a degree of truth into
the interval [0, 1] [40], which makes it well suited to introduce
smoothness in any decision process. The variable α must be
classified taking into account some qualitative attributes and it
may have varying levels of validity between the maximum 1
and the minimum 0. In particular, α should be close to 1 when
the current situation is actually dangerous for the worker, while
it should be 0 when both the robot and the human worker do
not move. In addition, the velocity values are not constant as
suggested by the ISO TS, but they are estimated in real time
to properly adapt the value of S to the current scenario.

Hence, it is necessary to generate linguistic rules of fuzzy
inference to realize a mapping of the inputs to the desired
output.

The fuzzy inference process has been developed as a three-
input, one-output, five-rule problem. The selected inputs are:

1) the time derivative of the distance between human and
robot, i.e., ḋ = d‖p̂H−pR‖

dt ;
2) the scalar product between the robot and the human

velocity vectors, i.e., ṗT
R

˙̂pH ;
3) the temperature value of the human point at minimum

distance from the robot.

The first input is useful to distinguish when the operator and
the robot are getting closer (ḋ < 0) and when they are moving
away from each other (ḋ > 0). The second input specifies if
the travel directions of the operator and the robot are aligned
(ṗT

R
˙̂pH > 0) or opposite (ṗT

R
˙̂pH < 0). The third input relaxes

the speed monitoring if the point closest to the robot belongs
to not-human surface, providing reduction of the production
time. Note that the scalar product (second input) represents a
complementary information to the time derivative (first input)
to distinguish situations shown in Fig. 8.

The fuzzy system consists of five rules (see Table I).

TABLE I
FUZZY RULES: [S] SMALL, [M] MEDIUM, [H] HIGH, [N] NEGATIVE, [P]

POSITIVE, [YES] HUMAN TEMPERATURE, [NO] NOT-HUMAN
TEMPERATURE, [∼] ANY.

antecedent consequent
ḋ ṗT

R
˙̂pH human α

N ∼ ∼ H
P N ∼ S
P P ∼ M
∼ ∼ Yes H
∼ ∼ No S

Two membership functions have been selected to represent
positive (P) and negative (N) values, a Z-shape and a S-shape,
respectively, as well as, to represent human (Yes) and not-
human (No) temperature ranges equal to those used for the
construction of the thermal point cloud. The defuzzification is
performed according to the centroid method.

Note that the output value, α, is generated by analyzing
different possible risk situations, corresponding to the three
fuzzy sets high (H), medium (M) and small (S), with the
twofold aim of avoiding any collisions between human body
surface and robot, and being in line with the current ISO/TS
15066.

B. Trajectory scaling

A standard SSM method usually sacrifices the production
time because the minimum protective distance S is constant.
On the contrary, the proposed strategy implements an algo-
rithm to adapt the minimum protective distance S to the actual
operating conditions and, in turn, changing the robot speed.

A typical pre-programmed task, T , is composed by N
positions q̃i, associated to velocities ˙̃qi, accelerations ¨̃qi and
time instants t̃i with i = 1, . . . , N . In the control interface
of the robot used in the experiments presented in Section V,
the pre-programmed joint positions have to be interpolated
according to the sampling time Tc. Nevertheless, the strategy
described below simply translates into the computation of
a scaling factor for industrial robots that allows the user
to change the speed override in real time. In this work a
quintic interpolation is assumed, i.e., the planned interpolated
trajectory is

q̃h = p5(th; T ) (15)
˙̃qh = p4(th; T ) (16)
th+1 = th + Tc, (17)

where th is the h-th discrete time instant, p4 is the derivative
of the polynomial p5, q̃h and ˙̃qh are the planned joint position
and velocity at time th, respectively.

The robot speed is modulated by scaling the trajectory time
with a safety scale factor k, which can assume values in
the interval [0, 1]. The mathematical expression of the curve
relating d with k is a piecewise-defined function whose graph
is shown in Fig. 9. More in detail, when d < S, k is 0 and
the robot stops as required by the SSM constraint. Otherwise,
when d > νS, where ν > 1 is a design parameter needed to
guarantee continuity of k, the robot can move at full speed to
improve the production time, i.e., νS represents the warning
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Fig. 9. Relation between d and k; S is the minimum separation distance
computed in real time as in (2).

distance. Finally, when d assumes a value between S and
νS a polynomial of order at least 3 should be used to avoid
acceleration discontinuities (see (20)).

Practically, the trajectory is scaled computing (15) using a
scaled time τh, i.e.,

qh = p5(τh; T ) τh+1 = τh + kTc, (18)

where qh is the actual joint command at time th. Obviously, the
joint command qh, as well as the scaled time τh, are generated
with sampling time Tc.

This approach effectively scales the joints velocities. In fact,
using (18), it is

τ̇ ≈ τh+1 − τh
Ts

= k. (19)

By time differentiating (18), (20) demonstrates that the
velocity is scaled by the safety factor k,

q̇h = p4(τh; T )k. (20)

This approach guarantees that the task T remains the
same in position, but, simultaneously, the resulting velocity is
scaled according to k. Note that, in case the industrial control
interface of the robot allows the user to change online the
speed override of any motion instruction, it is sufficient to set
a speed override equal to the factor k. Section V-C reports an
experiment where an industrial robot is controlled in this way.

V. EXPERIMENTAL RESULTS

To assess the practical relevance of the proposed method,
this section shows some results. The experiments are executed
on two different setups. The first lab-scale setup includes a
Yaskawa MOTOMAN SIA5F industrial robot performing an
assembly-like task, i.e., a cyclic pre-programmed trajectory.
The application is based on a ROS industrial architecture and
the external PC communicates, through an Ethernet cable at
50Hz, the reference joint positions to the robot controller,
equipped with the MotoPlus SDK [41]. The second full-
scale setup includes a robotic cell designed to perform the
cooperative assembly of aeronautical panels composed of
hybrid (composite-metal) structural parts [42]. The robot is
a Fanuc M-20iA-35M whose controller allows the user to set
on line a register with the desired value of the speed override.
This value is set by the external PC running the speed scaling

Fig. 10. Standard Yolo CNN for human detection on RGB images: a plastic
mannequin which has a shape similar to the human one, is wrongly classified
as Human.

algorithm that computes the speed override k. The external
PC communicates with the cell Human Machine Interface
(HMI) module via TCP-IP with a frequency at which the
scaling algorithm runs, i.e., 30 Hz. Finally, the HMI updates
the register of the robot controller in real time via EtherCAT
Automation Protocol (EAP).

A. Human detection

The performance of the novel CNN will be compared with
standard pre-trained RGB-CNNs as well as with single-source
CNNs, i.e., trained on depth or thermal images only.

1) Standard RGB-CNN: The first experiments are con-
ducted by using standard RGB-CNNs. Unfortunately, these
pre-trained networks always confuse a plastic mannequin or
other objects with shape similar to humans (see Fig. 10) and
classify them into the Human Class. This type of result is
clearly unusable in industrial environments as it would produce
too many false positives. Consequently, any speed scaling
algorithm that has such a wrong classification input would
involve unnecessary robot stops, therefore a useless dead time.

2) Single-source CNNs Vs DT-CNN: To evaluate the per-
formance of the novel DT-CNN, two single-source CNNs are
trained at the same time. The first one processes only depth
images (D-CNN) and the second one processes only thermal
images (T-CNN). The test is useful to better understand
the need of the sensor fusion approach to achieve robust
and reliable detection results. Note that the three networks
have been trained and tested with the same input data-set to
correctly compare the results.

The training data-set is composed of manually labeled
images. Yolo requires that each image is supported by a text
file which contains the information about the category of
the labeled objects and the coordinate values of the drown
bounding boxes. The images are saved starting from a recorded
video stream and an available Python program automatically
saves the frames at a chosen rate. YOLO-Annotation-Tool
software is used to manually label the images and generate
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Fig. 11. YOLO-Annotation-Tool software supports manual labelling step: the
programmer draws the bounding box around the human operators present into
the image and labels them as belonging to the Human Class.

Fig. 12. mAP evaluation: comparison between the area returned from the
prediction (green box) and the ground truth (blue box).

the corresponding text files, as shown in Fig. 11. Note that
the training phase needed about 1000 training samples to
achieve the presented performance. This requirement repre-
sents another great advantage of using the proposed approach,
if compared with RGB pre-trained CNNs which need tens of
thousands of images to be trained.

The metrics adopted to measure the accuracy of the novel
CNNs are reported in Table II. The first metric is the Mean
Average Precision (mAP) [43] which determines the accuracy
of finding the coordinates of the bounding box in which
the object is predicted to be. Computing the mAP consists
in comparing the area returned from the prediction (green
box) and the ground truth (blue box), as shown in Fig. 12.
Since the mAP value does not consider false positives and
false negatives, the percentage of erroneous detection has been
manually estimated. Table II reports all the results. The DT-
CNN mAP is almost similar to the single-source CNNs and
represents a good value of prediction accuracy based only on
true positives. The most clear advantage of using DT-CNN is
about the percentage of false positives, which is considerably
lower than the other networks. The proposed approach is
able to correctly distinguish only human operators thanks to
the additional temperature information. This is a remarkable
result which guarantees that any robot speed scaling algorithm
can robustly impose the nominal speed by assuring worker
safety and maximizing the production time in industrial en-
vironments. The high percentage of false positives of single-
source approaches is to be found in cases where hot objects
(T-CNN) or objects with shapes comparable to human ones (D-

TABLE II
CNNS TESTING RESULTS

CNN mAP % False Positives % False Negatives %
D-CNN 65.09 36.87 17.53
T-CNN 62.76 64.35 4.37
DT-CNN 57.54 2.47 11.85

Fig. 13. Two cases of human false positives: a coat rack labeled as human
in the D-CNN approach (left); a hot moving robot labeled as human in the
T-CNN approach (right).

CNN) can be confused with humans, as shown in Fig. 13. For
completeness, the percentage of false negatives remains low
for all three neural networks. Part 1 of the accompanying video
of the experiment regarding the proposed DT-CNN clearly
shows the differences with the single-source CNNs.

B. Lab-scale experiment

This section shows a complete example of a collaborative
task to highlight all the features of the proposed methods. All
the algorithms, except the DT-CNN, run on a standard desktop
PC running Ubuntu 16.04 LTS with an Intel Core i7-8700K
CPU at 3.70GHz, 12GB of RAM and an nVidia GeForce GT
730 GPU with 12GB of memory. The Yolo prediction process
runs on a PC running Ubuntu 18.04.2 LTS with an Intel Core
i9-7980XE CPU at 2.60GHz, 18 GB of RAM and an nVidia
Titan V GPU with 12GB of memory.

1) Task description: The scene simulates a robot executing
a pre-planned path at a given nominal speed, and a human
operator who enters the collaborative workspace to perform
some inspection checks. The operator handles different ob-
jects, e.g., a bubble level, a notepad, close to the robot, at
different distances and approaching it randomly. Fig. 14 shows
the main snapshots of the task execution which demonstrate
that, by reading the temperature of the point belonging to the
human cluster which is the closest to the robot, the fuzzy
inference system (Fig. 15) marks it as belonging to an object
manipulated by the operator or actually belonging to the
human body surface. More in detail, at t = 12 s the operator
puts a bubble level on the desk, then he closes the toolbox at
t = 18 s and he takes a notepad to write some inspection
measurements at t = 26 s. During these phases, the point
closest to the robot belongs to the handled tools, thus the
robot may proceed at a slightly higher speed. At the end of
the experiment, the worker puts the tools in place (t = 41 s)
and leaves the collaborative zone (t = 45 s), thus his body
surface is directly the most exposed to the robot motions, i.e.,
the fuzzy system reduces the robot speed to ensure the worker
safety. Note that the variations of the separation distance S(t)
are limited due to the low value of the nominal (when k = 1)
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Fig. 14. Snapshots of the task execution of the lab-scale experiment: while
the robot is following its pre-programmed path, at t = 12 s the operator enters
its workspace and puts a bubble level on the desk, then he closes the toolbox
at t = 18 s and he takes a notepad to write some inspection measurements
at t = 26 s. At the end of the experiment, the worker puts the tools in place
(t = 41 s) and leaves the collaborative zone (t = 45 s).

robot speed and the constant terms in eq. (2), which prevent
its further reduction.

2) Task results: Results are shown in Fig. 15 and in Part 2
of the accompanying video of the experiment.

The bottom graph represents the robot speed scaling per-
formance. More in detail, at about 10 s the operator enters the
collaborative workspace and the system starts to measure the
separation distance d (green line). When d goes below the
warning distance νS, with ν = 2, (red line) at about 11 s,
the trajectory scaling factor k (magenta line) becomes lower
than 1 and the robot reduces its velocity without changing its

path. During some intervals of the collaborative phase, d goes
below the minimum protective distance S, thus k becomes 0
and the robot stops.

The top graph compares the αold values (green line) ob-
tained through the preliminary fuzzy inference system pro-
posed in [3], and the α values computed with the new
algorithm (indicated with αnew in the figure (blue line)).
The difference is due to the use of the new input, i.e., the
temperature value, T (red line), of the point at minimum
distance from the robot, which belongs to the human cluster.

Until 12 s the operator is inside the collaborative workspace
and manipulates the bubble level to perform his task. After
that, at about 18 s, he closes the toolbox, thus his body part
becomes close to the robot: the elbow, the right arm, the
hand, the shoulder are most exposed to risk in the direction
of the robot. Therefore, the mean value of the temperature of
these points is about 35◦ C, that the fuzzy inference system
associates to the human surface. In this first phase, the αnew

signal follows the αold one without major changes.
The most interesting phase is the second one. At about

26 s, the operator takes notes on a notepad to perform some
inspection checks. From this moment on, the notepad is the
object closest to the robot. Note that it clearly belongs to the
human cluster, even if it is not part of the operator body
surface. The temperature value can be read to realize this
difference. Indeed, during this phase the point at minimum
distance has got a mean value of about 28◦ C, which does not
represent a human surface temperature value. The proposed
fuzzy inference approach adopts this input also for the αnew

computation, which is lower than the αold estimation because
the risk is considered lower. In other words, during similar
situations, the minimum protective distance S can be reduced
to allow the robot to move faster. The last phase, at about 38 s
is similar to the first one, when the closest point of the human
cluster belongs to the human surface.

C. Full-scale experiment
A similar experiment has been performed on the full-scale

robotic cell reported in Fig. 16, where a robot is performing
a quality inspection task and the worker is dismantling a
metal part after its drilling for deburring purposes. The results
reported in Fig. 17, where the minimum protective distance is
computed according to the proposed method in eq. (2), show
that the robot moves at scaled speed when S < d < νS and
only for a few moments it moves at zero speed. In fact, the red
zone at about 80 s highlights the time interval when the robot
is completely stopped since the separation distance d is below
S. Fig. 18 shows what would have happened if the minimum
protective distance S had been a constant value calculated
according to (1): the duration of robot stops is significantly
larger, with a clear drawback in terms of robot work cycle
time. Note that the robot moves at its nominal speed only when
the human worker is not inside the collaborative area, i.e., the
blue line representing the separation distance d is absent.

VI. CONCLUSION

The paper contributed with two methods to the problems
that arise when using collaborative robots in industrial ap-
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Fig. 15. Experiment: an operator enters the shared workspace to make some inspection checks while the robot is moving. The top plot shows the comparison
between αold values (green line) obtained through the preliminary fuzzy inference system of [3] and α values obtained with the new fuzzy system (indicated
with αnew (blue line)) which considers the temperature value T (red line – right axis) of the human point closest to the robot. The bottom plot shows the
estimated separation distance robot-operator d, the protective distances proposed by the paper (S and νS) and the scaling factor k (magenta line – right axis).

Fig. 16. The LABOR robotic cell during a cooperative assembly operation:
the robot is performing a quality inspection task, while the human worker is
dismantling a metal part for deburring after hole drilling.

Fig. 17. Proposed method: S(t) is computed online as in (2). The plot shows
the comparison between the separation distance d (blue line) and the time-
variant range [S, νS]. The robot mostly moves at full or scaled speed, while
the complete stop area is minimal.

Fig. 18. Standard method: S is a constant value computed as in (1). The plot
shows the comparison between the separation distance d (blue line) and the
fixed range [S, νS]. The zero speed zones are very large, causing considerable
increase of the production time. The robot moves at full speed only when the
human operator is outside the collaborative area (green zone).

plications. Specifically, the STP proposes a new multimodal
perception system that fuses depth and thermal images for
reliable human detection and tracking in a robotic workcell.
The new RGB mapping approach can be generally applied
to any other perception system that intends to use thermal
and RGB cameras for obtaining a single image. The algo-
rithm, besides the separation distance between the robot and
the human, computes a thermal point cloud of the detected
humans, which helps to distinguish body parts from handheld
tools. The STC method proposes a fuzzy inference system
able to compute dynamically the minimum protective distance
according to a risk analysis based on the perception data.
A simple speed scaling algorithm is used to modulate the
robot velocity in each situation preserving safety of the human
operators in the workcell. The combination of the two methods
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allowed achieving a high productivity of the workcell by
minimizing robot stops while ensuring safety owing to the
additional thermal information. An experiment on a full-scale
robotic workcell for cooperative assembly of aircraft panels
has also been presented. The algorithms can easily be extended
to the multirobot case and already work in case of multiple
humans. Even though the paper proposes an approach limited
to the case of workspace sharing without any physical contact
of the robot with the human, some of the results can be
extended to this case also. For example, the FIS used for the
risk assessment could be designed to assess the risk of the
physical human-robot contact based on the robot velocity and
configuration, as well as on the location of the contact detected
by the human monitoring system able to capture the different
body parts.
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Abstract. Aerospace production volumes have increased over time and robotic solutions have been
progressively introduced in the aeronautic assembly lines to achieve high-quality standards, high production
rates, flexibility and cost reduction. Robotic workcells are sometimes characterized by robots mounted on slides
to increase the robot workspace. The slide introduces an additional degree of freedom, making the system
kinematically redundant, but this feature is rarely used to enhance performances. The paper proposes a new
concept in trajectory planning, that exploits the redundancy to satisfy additional requirements. A dynamic
programming technique is adopted, which computes optimized trajectories, minimizing or maximizing the
performance indices of interest. The use case is defined on the LABOR (Lean robotized AssemBly and cOntrol of
composite aeRostructures) project which adopts two cooperating six-axis robots mounted on linear axes to
perform assembly operations on fuselage panels. Considering the needs of this workcell, unnecessary robot
movements are minimized to increase safety, the mechanical stiffness is maximized to increase stability during
the drilling operations, collisions are avoided, while joint limits and the available planning time are respected.
Experiments are performed in a simulation environment, where the optimal trajectories are executed,
highlighting the resulting performances and improvements with respect to non-optimized solutions.

1 Introduction

Nowadays, the huge volumes in manufacturing indus-
tries have brought to an increment in the employment of
autonomous systems performing the hardest and repeat-
able operations, in order to increase the overall efficiency
of the production lines. As a consequence, robotized
solutions are frequently adopted to obtain a higher level
of automation, while guaranteeing high quality results.
On the one hand, the aerospace sector, as highlighted in
[1], is the least automated because of the large and
complex systems to handle and the wide variety of
activities to be carried out during the production phases,
including drilling, sealing, fastening, inspection, coating,
painting and material handling [2]. On the other hand,
even in this context, in agreement with the global trend,
production volumes have increased in the last years,
requiring automatic solutions where robots perform such
operations.

Typically, robotized solutions in large industrial plants
have the commoncharacteristic of employing robotsmounted
on slides, i.e. linear axes, to increase theirworkspace andallow
them to cover wide areas. These linear axes introduce
additional degrees of freedom that yield kinematic redundan-
cy, i.e. there is an infinite number of joint configurations
corresponding to the same pose of the end-effector.

Kinematic redundancy is also the key in applications
involving mobile manipulators [3], that are versatile
systems, capable of performing different kinds of tasks.
Their flexibility comes with an increased complexity due,
among other things, to the capability of handling the
kinematic redundancy efficiently. This characteristic has
been the main impediment to the spreading of mobile
robots in the aerospace manufacturing lines. In fact, in
order to simplify the setup of the workcell, the existing
solutions foresee to neglect the extra degrees of freedom
during trajectory planning, using them exclusively to
increase the workspace of the robots.

Existing robotized solutions in aerostructures manu-
facturing are typically complex, heavy, rigid and expen-
sive, since high-payload robots are adopted and the
demanding requirements of the assembly operations yield
an increase of cost. Especially in the case of regional aircraft
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industry, assembly of fuselage aerostructures is largely a
manual process because of the need for high accuracy,
which is not achievable by the common industrial robots.
In fact, this is typically guaranteed through external
metrology systems that, however, increase the overall cost
of the system and reduce its flexibility.

Furthermore, a complete assembly cycle requires to
perform the mentioned tasks on thousands of holes per
aircraft, thus tight time constraints are usually imposed on
each single operation to keep the production rates high.
Also, since in most cases the human intervention is still
required, the automated workcell must be adapted for
human cooperation [1,4,5]. In particular, a higher degree of
safety is necessary, avoiding dangerous robot movements
and configurations.

This paper concerns the employment of small and
medium sized high-precision robots, whose workspace is
augmented through the introduction of extra degrees of
freedom. They guarantee higher flexibility and speed,
naturally contain costs and can be programmed to increase
production quality and safety. Kinematic redundancy is
exploited to optimize one or more performance indices of
interest for aerostructures assembly, as well as to respect all
the typical constraints that characterize such applications.

Finally, as highlighted in [6], industrial robots are often
programmed by using the robot-specific teach pendant,
which is a very slow and not efficient solution and is not
suitable especially for mobile robots moving in a dynamic
environment. Handling redundancy allows to define tasks
directly in the workspace, pushing the programming
interface to a higher level of abstraction, leading to greater
flexibility and efficiency in the workcell management.

1.1 Motivation of the paper

The case study of this paper comes from the European
project LABOR (Lean robotized AssemBly and cOntrol of
composite aeRostructures) [7]. Its objective is to build an
automated solution for the assembly process of fuselage

parts, such as skins, stringers, frames and door surround
components, where drilling, sealing, fastening and inspec-
tion are performed by small/medium size robots, in
replacement of the large and heavy robots that characterize
the state of art in aeronautical machining cells.

A 3D reconstruction of the LABOR cell is provided in
Figure 1. The panel is mounted on a rotating jig, that holds
and orients the panel during the assembly operations
performed by two cooperating six-axis robots mounted on
the two sides of the panel, namely: the external and internal
(with respect to the curvature of the panel) robot. The
former performs drilling, sealing, fastening and inspection
from the hole entry side while the latter performs the
inspection from the hole exit side and applies a clamping
force during the drilling phase. Each robot is mounted on a
platform moving on a linear axis (the 7-th axis), allowing
for the movement along the length of the panel. The
combined movement of the robots, the slide and the jig
allows to cope with the size of the panel which is much
larger than the workspace of the two six-axis robots.

The nominal working sequence starts with the internal
robot inspecting the area, performing the referencing and
computing the drilling coordinates which are sent to the
external robot. Then, the external robot starts drilling
while the internal robot applies the counterthrust force. At
the end of the drilling operations, the external robot
inspects the drilled hole. Such operations are repeated for
each hole of the sequence. Once all the holes have been
drilled, the external robot mounts the sealing and fastening
tool and goes back to the first hole of the sequence to start
sealing and fastening. At the end, if it is required, the
internal robot performs the inspection of the fastened holes.
The work to be performed on every hole must not exceed
30 s (excluding after-fastening inspection) in order to
respect the overall cycle time for the whole panel.

The current setup foresees that the trajectories tracked
by the robot during the assembly operations (e.g. from one
hole to the other) are directly assigned in the joint space, by
keeping the jig and slide fixed. In particular, jig-slide

Fig. 1. LABOR cell represented in the CoppeliaSim simulator.
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positions are found corresponding to best working areas for
the robots to improve the quality of the assembly
operations. These are found through some heuristics such
as placing the slide right in front of the hole with the robot
tool close to the base and the arm less elongated. This way,
the redundancy introduced by the presence of the slide is
not exploited, resulting in several shortcomings.

In the current setup, holes are in vertical sequences,
such that the slide is not moved during the operations on a
single sequence. This limits the performances, preventing
to efficiently operate on different hole patterns which are
needed for some specific panel areas, e.g. doors, windows.
Since large and geometrically complex tools are mounted at
the robot end-effector, collisions with the panel and with
the robot itself can easily occur. Hence the system must be
equipped with collision avoidance algorithms, which are
even more important when human operators access the cell
during the working phase. In addition, the interaction with
the panel might not be stable, since slippage and
mechanical deviations may occur. Also, the time con-
straints imposed by the process have to be respected, as
well as joint limits imposed by the robot manufacturer.

Our goal is to deal with all these aspects by planning
trajectories that allow for more complex hole pattern
geometries, avoid unnecessary robot movements through
minimum joint displacements, prevent dangerous robot
configurations through collisions checking, increase stabil-
ity, by stiffness maximization, during drilling, while
respecting joint limits and being compliant with the
available planning time. The joint space configurations are
computed by simply defining the task in the workspace
(e.g. the position and orientation coordinates of the hole to
be drilled) and then optimizing, in the allotted time and in
a global manner, the postures that the robot has to assume
to make the end-effector reach the assigned positions.

Trajectories are optimized using the approach proposed
in [8] which is based on a dynamic programming (DP)
algorithm for planning robot trajectories in the joint space,
exploiting kinematic redundancy, in order to satisfy
additional requirements and effectively increase the
efficiency and the flexibility of the whole system. The
slide will not be kept fixed, but its motion will be planned as
part of the optimization process, treating it as an additional
joint to achieve more efficient configurations.

In Section 2, we recall the notion of kinematic redundancy
and present the dynamic programming approach, analyzing
the technique of the force ellipsoids for the stiffness
maximization. Then, in Section 3, experimental results are
provided, comparing them with the traditional approach. At
the end, in Section 4, conclusions and possible future
developments are discussed.

2 Problem formulation

2.1 Redundancy resolution

A manipulator is defined as kinematically redundant
when the number m of task constraints is lower than the
number n of degrees of freedom provided by the
manipulator’s kinematic chain. r=n�m is termed degree
of redundancy.

Let q= [q1 q2 ... qn]
T be the n� 1 vector of joint

positions representing the configuration of the manipulator
and x= [p f]T the m� 1 vector of task position p and
orientation f expressing the end-effector frame Te
coordinates with respect to the base frame Tb . Considering
a task described by six variables, the position is p∈ℝ3 and
the orientation f (R)∈ℝ3 is expressed through the set of
Euler angles [9] extracted from the 3� 3 rotation matrix
R∈SO (3) from Tb to Te . Themapping from the joint space
to the task space is performed through the non-linear
vectorial function k :ℝn!SE (3) , where SE (3)={(p, R):
p∈ℝ3, R∈ SO (3)}=ℝ3� SO (3)=ℝm. The direct kine-
matic equation, representing the path constraint, is
expressed as

x tð Þ ¼ k q tð Þð Þ; ð1Þ
where t∈ [0, T] denotes the time and T is the trajectory
duration.

When the task is assigned in the task space, the
kinematic equation (1) has to be inverted in order to find
the joint positions allowing to fulfill such a task, that is

q tð Þ ¼ k�1 x tð Þð Þ: ð2Þ
For a redundant robot, the inverse kinematics problem

in (2) admits, in general, an infinite set of solutions, i.e.
infinite joint positions that keep the end-effector motion-
less. This means that it is possible to optimize across such
solutions to achieve other objectives, besides respecting the
task constraint. This optimization process is usually
referred to as redundancy resolution.

According to [10], the infinite set of solutions can be
parametrized with r functions of the joint positions. Let us
call the vector of these functions u and add it to the direct
kinematic equations k, so as to obtain:

x tð Þ
u tð Þ

" #
¼ k q tð Þð Þ

ku q tð Þð Þ

" #
¼ ka q tð Þð Þ ð3Þ

where ku :ℝ
n!ℝr is the forward kinematics of some joint

combinations and ka is the augmented kinematics. By
differentiating (3), we obtain:

_xðtÞ
_uðtÞ

" #
¼ JðqðtÞÞ

JuðqðtÞÞ

" #
_qðtÞ ¼ JaðqðtÞÞ _qðtÞ ð4Þ

where J ¼ ∂k
∂q is the task Jacobian, Ju ¼ ∂ku

∂q is the

redundancy parameter Jacobian and Ja ¼ ∂ka

∂q is the
Jacobian matrix of the augmented kinematics. The
problem (3) is squared and can be inverted out of
singularities, when u is given. In the most simple case, u
can be made of r joint positions, whose selection, however,
is not trivial. For certain tasks, the manipulator may still
be redundant (and present infinite inverse kinematics
solutions), even though r joints are fixed. In such cases, the
selected joints are not representative of the redundancy
space, i.e. the null space of the Jacobian N (J), and Ja
is rank-deficient for some trajectory point. Therefore,
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we must ensure that

rank Jað Þ ¼ n ð5Þ
for each trajectory point. This requires to choose the
redundant joints such that

R JT
� �

∩R Ju
T

� � ¼ ∅ ð6Þ

whereR (M) represents the range space of a generic matrix
M [10].

A solution that satisfies (6) is not easy to find
analytically, especially for complex robots. Typically, in
practice, the choice is made empirically, depending on the
experience of the programmer. In our case, it can be verified
a posteriori, numerically or through the graphical repre-
sentation of the null space that the dynamic programming
approach itself provides. If the joints are correctly selected,
a finite number of solutions to the inverse kinematic
problem is retrieved by inverting (3). In particular, the
number of solutions depends on the robot type (i.e. planar,
regional, spherical, spatial) and on the imposed con-
straints.

As will be clear in Section 2.2, the Jacobian is only used
to verify the representativeness of the redundant joints,
since the first order kinematics is not needed. Operating at
joint position level is an important characteristic of the
dynamic programming approach, resulting to be immune
to singularities.

2.2 Redundancy optimization with dynamic
programming

In [8], redundancy resolution is addressed through discrete
dynamic programming. In this paper, we briefly recall this
framework and extend it to the specific objectives and
constraints that characterize the assembly of aerostruc-
tures in the LABOR project.

In the case of the LABOR cell, where the end-effector
tools must have a specific orientation due to their shape and
volume, the task variables are always six (m=6), even for
drilling, which is usually described by only five variables
[11]. Given a six-axis robot mounted on an additional linear
axis (n=7), we thus have r=1. In this paper, we provide a
formulation for this particular case, but the reader may
realize that it can be easily extended to cases where r> 1.

Let us consider the trajectory x(t), and discretize t in its
domain withNi+1 samples, with sampling interval t ¼ T

Ni
.

Then, let us parametrize the redundancy by joint selection,
so thatu= u= qi, where i is the i-th joint (the selected one).
We discretize u with Nj+1 samples in its physical domain
that depends on joint limits.

The augmented forward kinematics (3) can then be
inverted in this discrete domain, for each single sample of
x(t) and u(t):

qj;g ið Þ ¼ k�1
a x ið Þ;uj ið Þ� � ð7Þ

where i and j are the indices that span the samples of
the time and the redundancy parameter respectively, and
g=1,...,Ng is the index accounting for the presence of

multiple inverse kinematic solutions when the redundancy
parameter is given.

As mentioned in Section 1, the joint configurations and
their derivatives must satisfy joint limits (position and
velocity) and avoid self-collisions and collisions with the
surrounding environment. Joint limits are formalized as
follows:

qmin � q ið Þ � qmax ð8Þ

_qmin � _qðiÞ � _qmax ð9Þ
Collision constraints are checked referring to the

geometric shapes [12] of each robot joint S (qj (i)) and of
the environment Se, in such a way that the following
relationships are always verified:

S qj ið Þ� �
∩S qk ið Þð Þ ¼ ∅ ∀j; k ¼ 1; :::;n with j≠ k ð10Þ

S qj ið Þ� �
∩Se ¼ ∅ ∀j ¼ 1; :::;n ð11Þ

Thus, we can define the set Ai of admissible q at
waypoint i which takes the role of accepting only those
configurations satisfying (8), (10) and (11). Similarly, the
joint velocity limits _q can be accounted for with the set
Bi (q (i)) which, in general, is time-dependent, as well as
state dependent, i.e.

Ai ¼ qðiÞ : ð8Þ; ð10Þ; ð11Þ holdf g

Bi ¼
_qðiÞ ¼ qðiÞ � qði� 1Þ

t
:

qðiÞ∈Ai;qði� 1Þ∈Ai�1; ð9Þ holds

8>><
>>:

9>>=
>>;

ð12Þ

where the backward Euler approximation has been used for
discrete-time derivatives.

Onceqj,g (i) is available for each single value of i, j and g,
the objective is to find the optimal sequence of inputs that
minimizes or maximizes a given cost function. Let us
consider a generic cost function I that is computed
incrementally by summing up the local costs l for each i:

I Nið Þ ¼ c q 0ð Þð Þ þ
XNi

i¼1

l q ið Þ;q i� 1ð Þð Þ ð13Þ

where l is assumed to be a function of the joint positions
and their derivatives and c is the cost of the initial
configuration. It is typically set to zero, unless the
application requires to associate an explicit cost to it.

Assuming that the robot can reach the first drilling
position in a safe configuration, far from collisions, the
objective is to minimize the joint displacements, so as to
avoid unnecessary risky movements [13]:

l q ið Þ;q i� 1ð Þð Þ ¼
Xn
k¼0

jqk ið Þ � qk i� 1ð Þj ð14Þ

where k is the index spanning the joint position variables.
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Now we can rewrite the objective function (13) in a
recursive form and minimize over the possible configu-
rations q, i.e.

I 0ð Þ ¼ c q 0ð Þð Þ
Iopt ið Þ ¼ min

qj;g∈Ci�1

l q ið Þ;q i� 1ð Þð Þ þ I i� 1ð Þ½ � ð15Þ

where C i�1 is the set of admissible qj,g in Ai�1 that also
respect constraints on the derivative defined by the set
Bi . Iopt (i) is termed optimal return function, which is the
minimum value of the objective function if the process
started at stage i, thus Iopt(Ni) will be the optimized
function.

2.3 Force ellipsoids

The dynamic programming setup described in Section 2.2
allows to compute an optimal solution for each sample of
the redundancy parameter uj and inverse kinematic
solution g at the last stage Ni. The repetition of the
recursion in (15) up until the last stage allows retrieving the
globally-optimal solution for the given discretization of the
domains. However, as discussed in Section 1, besides
ensuring safe motions, we would like to guarantee stable
drilling operations. Thus, among the safe trajectories that
minimize the joint displacements, we choose the one that
ends in the stiffest configuration. This selection is based on
the analysis of the force ellipsoids.

The force ellipsoid represents the force transmission
efficiency generated by the set of torque vectors with norm
equal to one when the manipulator is in a given
configuration [14]:

tTt � 1⇒ fTJJT f � 1 ð16Þ
where t is the n� 1 vector of actuation torques and f is the
m� 1 vector of forces and torques at the end-effector. The
relationship t=JTf has been used in the equation above,
while the dependence of J on q has been omitted.

The shape of the ellipsoid is described by the
eigenvectors v and the eigenvalues l of the m�m matrix
A=JJT. With reference to Figure 2, the eigenvectors
indicate the orientation of the ellipsoid’s axes with respect
to the reference frame of the Jacobian and the reciprocals of
the square roots of the eigenvalues represent the length of
the semi-axes.

Assuming that the end-effector frame is aligned to the
task frame in such a way that the z axes are opposite and
the x axes are aligned, as in Figure 3, the objective is to
maximize the force capacity along the z axis, i.e. the drilling
direction. As highlighted in [15], the best performances
would be achieved if the ellipsoid’s major axis and the
direction of interest (z in our case) had the same
orientation. However, this is a difficult condition to obtain
due to collisions and kinematic constraints. As a conse-
quence, if J is computed with respect to the end-effector
frame, we maximize the distance between the center of the
frame, i.e. the center of the ellipsoid, and the intersection
between the ellipsoid surface and the z axis (the distance
represented in yellow in Figure 2). This distance is given by

the components of the JJT matrix selected through the
vector h, corresponding to the direction along which the
stiffness has to be maximized.

All the valid joint configurations at the last waypoint
are evaluated and the one with the maximum stiffness is
retrieved by using the Manipulator Mechanical Advantage
(MMA) index [16], i.e.

q Nið Þ ¼ argmax
qj;g∈CNi

hTJJTh
� ��1=2
h i

ð17Þ

This way, the only admissible configuration at the last
stage is the stiffest one q (Ni). Since the Jacobian is
expressed in the end-effector frame and we only consider
the translational components, the h vector will be equal to
h= [0 0 1 0 0 0]T, which corresponds to the z axis. It is
worth remarking that (17) is a special case of the
optimization problem in [17], obtained by setting the same
compliance for all joints.

Recalling the optimization function (15) at the final
stage Ni, we have that

Iopt Nið Þ ¼ min
qj;g∈CNi�1

l q Nið Þ;q Ni � 1ð Þð Þ þ I Ni � 1ð Þ½ �

ð18Þ

Fig. 2. Force ellipsoid representation.

Fig. 3. End-effector and task frames.
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where q (Ni) is the stiffest configuration obtained by
applying (17).

2.4 Algorithmic implementation

The algorithm in [8,18] has been modified to include the
stiffness optimization on the last waypoint, as well as to
consider the specific objective function and constraints that
characterize the LABOR use case. Its pseudo-code is
provided in Algorithm 1.

The algorithm works on Ng grids of size Ni�Nj, whose
cells (i, j) represent possible configurations q at which the
robot can be at the corresponding stage i. For each cell, a
transition is evaluated towards all the cells at the next
stage, i.e. i+1: constraints are checked and, if satisfied, the
local cost l and the cumulative cost I are computed and
saved. The optimal transition is the one returning the
minimum cumulative cost.

Once all the costs have been computed for the last stage
Ni, the stiffness of each enabled configuration at this stage
is computed. The node with themaximal stiffness is selected

and, starting fromsuch configuration, the entire trajectory is
built backwards, following the predecessors’ list.

It is worth noticing that the grids represent the null
space for the entire trajectory and their graphical
representation through colored maps [8] is used for the a
posteriori verification of the redundant parameter repre-
sentativeness, as mentioned in Section 2.1.

3 Experimental results
Algorithm 1 has been implemented in ROS (Robot
Operating System) in order to reuse the available modules
to plan and visualize trajectories in the task space and to
simulate the motion in the RViz virtual environment and
assess the stiffness optimization. ROS has also been used to
connect the DP planner to the CoppeliaSim simulator in
order to command the Fanuc M20iA/35M model in the 3D
scene with the LABOR panel.

The position and velocity limits that have been used in
the algorithm are extracted from the official Fanuc
datasheet and reported in Table 1 for the sake of clarity.
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3.1 Time requirement

The dynamic programming algorithm presented in
Section 2.2 is usually employed for off-line applications
[8,13,19,20] because of the computational effort required to
find the optimal solution. While the algorithm is far from
being applied in scenarios requiring real-time planning, in
some circumstances, it is suitable to plan trajectories while
the robot already moves or interacts with the workpiece. In
the LABOR project, the trajectories cannot be completely
pre-planned because they are subject to the referencing
operations performed by the internal robot, that provides
the initial drilling position of a known pattern. However, at
each position in the pattern, the robot stops to perform the
task of interest (drilling/sealing/fastening) and this time
can be used to plan the next hole-to-hole trajectory in the
pattern in an optimal way: the trajectory optimization
process must not exceed the time for drilling and sealing/
fastening operations. Here we analyze what, in the LABOR
project, these time requirements are, thus providing an
upper bound for the DP algorithm to complete before the
external robot needs to move to the next hole.

The estimation is based on the requirement that the
cycle time is 30 s per hole (considering drilling, counter-
sinking, hole inspection, sealing, fastener insertion and not
considering fastener inspection), but such a time is not
allocated to specific tasks. Thus, we make the simplifying
assumption that the distribution of time across the several
tasks is the same as manual operations. We consider the
time needed for the manual installation of 9mm grip Hi-lite
fasteners for 1500 holes in a CFRP and thermoplastic
compound panel, and keep the same time percentages for
the automatic assembly. The results are shown in Table 2.

In particular, the drilling time results to be equal to
13.62 s (considering all the operations except sealing and
riveting) and the fastening time is equal to 16.38 s
(considering only sealing and riveting). As a consequence,
the planning for each hole-to-hole trajectory has to be
completed within the minimum of such times.

3.2 Planned trajectories

Simulations have been performed by planning four hole-to-
hole trajectories for five drilling points, by keeping the
orientation fixed. Such trajectories are longer than the real
ones to highlight some characteristics of the optimization
process that we will discuss next. The trajectories are
shown in Figure 4, and the parameters used for planning
are reported in Table 3. The initial position for the first
trajectory is not known so it is computed as a result of the
optimization process, while, for the others, the initial
position must correspond to the final position of the
previous trajectory.

The slide position has been empirically selected as
redundancy parameter and, as discussed in Section 2.1, an
a posteriori verification is performed to be sure that the
condition (5) holds for all waypoints. The slide resolution in
Table 3 indicates the minimum displacement of the slide
joint in its discrete domain and has been selected as a result
of the trade-off between optimization quality and execution
time: the higher the resolution is, the closer the solution will
be to the global optimum. Like many other six-axis
industrial robots, even for the Fanuc M20iA/35M, it is
Ng=8 although, due to constraints, the number of
admissible inverse kinematics solutions may be lower.

The execution of the four trajectories of Figure 4 in
CoppeliaSim is shown in [21]: unlike the current planning
policy, the DP algorithmmakes the slide move to minimize

Table 1. Fanuc M20iA/35M joint limits.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Slide joint

qmax �3.225 rad �1.7553 rad �3.225 rad �3.49 rad �2.4435 rad �7.854 rad �2.1 m
qmin 3.225 rad 2.7925 rad 4.8171 rad 3.49 rad 2.4435 rad 7.854 rad 2.1 m
_qmax 3.14 rad/s 3.14 rad/s 3.49 rad/s 6.11 rad/s 6.11 rad/s 6.98 rad/s 9.6m/s

Table 2. Time estimated for automatic operations on a
CFRP and thermoplastic compound panel with 1500 holes
using 9mm grip Hi-lite fasteners.

Assembly operations Percentage
of time

Per hole

Drilling: 3.1mm diameter hole 0.07 2.04 s
Diameter increasing
from 3.1 to 4.0 mm

0.06 1.93 s

Diameter increasing
from 4.0 to 4.8 mm

0.06 1.93 s

Countersinking 0.12 3.54 s
Sealing and riveting 0.55 16.38 s
Inspection 0.14 4.19 s

Total time 1.00 30 s

Fig. 4. Four task-space trajectories in the CoppeliaSim simula-
tion environment.
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the overall motion of the joints and to reach a stiff
configuration at the end of each trajectory. It is important
to remark that this is done by assigning the tasks directly in
the task space. Joint limits and collisions are automatically
checkedandavoided.Theplanning timespans from21to29 s
for trajectories longer than 288mm with 10/15 waypoints.
The trajectories that are considered in the LABOR project
are much shorter (25.4mm), being the points in the pattern
much closer. By keeping the same trajectory resolution, we
would only need 3 waypoints to describe such trajectories.
Since the computation time scales linearly with the number
ofwaypoints,we should expect the planning time to be equal
to about 8 s, respecting the upper bound of 13.62 s as
estimated above. Plots of planned joint space trajectories
against time are provided in Figure 5.

3.3 Stiffness analysis

Now let us make a deeper analysis on the stiffness
considering the 4th trajectory. In Figure 6 (left), the force
ellipsoid for the last position (the working pose) is plotted
in RViz. Here the red, green and blue vectors are the
ellipsoid’s semi-axes, while the yellow vector represents the
distance between the center of the tool frame and the
ellipsoid surface, to be maximized. The stiffest configura-
tion is the one having the yellow vector aligned with the

major axis of the ellipsoid, but kinematic constraints and
collisions may prevent to reach such a condition. For the
4th trajectory, the resultingMMA is equal to 1.099. Details
on the direction and length of each axis with respect to the
tool frame (as the one represented in Figure 3) are reported
in Table 4. It is worth noticing that the robot is slightly
placed on the left of the working point, while the ellipsoid is
quite oblique. In fact the y component of the major semi-
axis (the red one) is equal to�0.0825 while its z component
is almost aligned with the z axis of the tool frame, i.e.
�0.9008. Hence, it is intuitive to conclude that stiffer
configurations may exist.

Let us repeat the experiment by considering a slower
end-effector trajectory (from 0.55 to 1.4 s), so that the
robot will have more time to move its kinematic structure
without violating joint velocity and acceleration limits.
The final configuration is shown in Figure 6 (right),
together with the force ellipsoid. In this case the MMA is
equal to 1.127, which is higher than the MMA obtained
with a faster trajectory. The related ellipsoid’s parameters
are reported in Table 5. We can notice that the ellipsoid is
more elongated and its major semi-axis is better aligned
with the drilling direction, resulting in a stiffer posture.
The y component is perfectly aligned with the correspond-
ing axis of the tool frame and its length is also higher (1.8
instead of 1.7629).

Table 3. DP solver parameters for trajectories 1–4. Planning times are related to the execution of the algorithm on a
virtual machine with a single-threaded implementation.

Trajectory Waypoints
(Ni)

Length
(mm)

Slide resolution
(mm)

Duration
(T) (s)

Planning
time (s)

1 1st to 2nd hole 10 288.5 13.2 0.55 27
2 2nd to 3rd hole 10 321.4 13.2 0.55 21
3 3rd to 4th hole 10 339.0 13.2 0.55 29
4 4th to 1st lateral hole 15 1060.0 13.2 0.55 24

Fig. 5. Planned joint and slide positions for trajectories 1–4 plotted in sequence. The end of each trajectory is indicated with a
dotted line.
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A comparison between the two trajectories is provided
in [22]: in the second trajectory the robot is obviously
slower but this allows reaching a stiffer final posture.

Hence, depending on the assigned parameters and the
trajectory characteristics, the joint-space trajectory will
change, allowing the robot to adapt to different situations
and scenarios.

3.4 Comparative results

As explained in Section 1.1, the traditional approach is
based on the heuristics of fixing the slide in a position which
should lead to the stiffest manipulator configuration.
According to it, in the case of the first three trajectories of
Table 3, the slide is placed in front of the vertical hole

sequence and the joint space trajectory is found. We
remark that no optimization occurs in this case, as the
inverse kinematics problem is squared. In terms of both
MMA and joint displacements, the two techniques provide
similar results, as Figure 7 and Table 6 testify.

Now, let us consider the 4th trajectory again, which is a
lateral motion. This task cannot be achieved by fixing the
slide, as the path exits the manipulator’s workspace. In the
current LABOR setup, as shown in [23], the robot returns

Fig. 6. Frontal and lateral view of the force ellipsoid of the last position of the 4th trajectory, planned with a trajectory duration of
0.55 s (left) and 1.4 s (right).

Table 4. Parameters of the ellipsoid resulting from the
planning of the 4th trajectory with duration 0.55 s,
expressed with respect to the tool frame.

Axis Eigenvector Length

x y z (1=
ffiffiffi
l

p
)

Red axis 0.4262 �0.0825 �0.9008 1.7629
Green axis �0.8127 0.4025 �0.4214 0.5726
Blue axis 0.3973 0.9117 0.1045 0.6608

Table 5. Parameters of the ellipsoid resulting from the
planning of the 4th trajectory with duration 1.4 s,
expressed with respect to the tool frame.

Axis Eigenvector Length

x y z (1=
ffiffiffi
l

p
)

Red axis 0.4193 0.001 �0.9079 1.8
Green axis 0.9077 �0.0183 0.419 0.5743
Blue axis �0.0161 �0.9998 �0.008 0.6613

Fig. 7. Planned joint positions with fixed slide for the
trajectories 1–3 plotted in sequence. The end of each trajectory
is indicated with a dotted line.

Table 6. MMA values obtained from the dynamic
programming algorithm moving the slide and from the
heuristics by fixing the slide position.

Trajectory Moving slide Fixed slide

1 0.922 0.922
2 0.819 0.819
3 0.741 0.741
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to its home position, the slide moves in front of the lateral
hole, then the robot arm moves to the drilling position.
Alternatively, inverse kinematics could be solved for the
last hole, assuming the slide already be in front of it: two
point-to-point motions are planned for both the slide and
the arm, commanded separately, and executed at the same
time. Regardless of the time difference of the two solutions,
either strategy does not guarantee any control over the
end-effector motion, resulting in a safety issue. On the
contrary, in the proposed DP technique, the path is defined
in the workspace and the movements of both the arm and
the slide are planned together: a collision-free safe motion
of both the end-effector and the whole kinematic chain is
guaranteed, together with a final posture that is at least as
stiff as the one obtained with the traditional approach.

In general, it should be expected that the benefits of the
proposed techniques are much more evident when the
assembly operations require lateral motions along the
fuselage panel or coverage or more complex geometries. For
instance, let us consider the assembly operations around a
window of the fuselage. In [23], we show what the
movement of the arm and the slide would be if the
trajectories from one hole to the other, along the window
perimeter, were planned with the proposed DP algorithm.
The slide would follow the manipulator for each hole to be
drilled so as to minimize the global joint motion and allows
for less elongated postures of the arm when reaching lateral
holes. On the contrary, by fixing the slide position, the
manipulator must elongate to reach all the holes, to the
detriment of stiffness. In addition, due to the higher joint
displacements, the time required to execute the path is
about three times higher than dynamic programming.

4 Conclusions

Robotized solutions in large industrial plants are typically
characterized by the presence of slides on which robots are
mounted to increase their workspace. This leads to the
introduction of kinematic redundancy which, however, is
not efficiently handled and not exploited to satisfy typical
requirements of aerospace manufacturing that are very
demanding and sometimes not achievable by the common
industrial robots. An example of such solutions is given by
the LABOR project which provides a system to make
autonomous assembly operations of fuselage panels by
using two cooperating robots placed on slides. Since strict
safety, stability, accuracy and efficiency requirements
exist, we proposed a methodology that retrieves optimized
trajectories by exploiting the kinematic redundancy
provided by the system itself. Joint space trajectories that
satisfy the requirements above are generated in the allotted
planning time. In particular, we planned safe motions for
the robots by minimizing the joint displacements, and
maximizing the stiffness at the working pose. At the same
time, we avoided collisions, self-collisions and joint limits.
We employed a discrete dynamic programming algorithm,
characterized by a high degree of flexibility and adaptabil-
ity to different scenarios. This is the main strength of the

proposed technique as it allows to tackle different
situations with different robots, trajectories and panels,
by only changing, for example, the cost function and the
constraints. Moreover, a suitable parametrization of the
algorithm allows to achieve the desired performance and
comply with the time requirements.

We have seen that the LABOR cell is provided with two
robots working together to perform assembly operations.
We expect that the workcell efficiency can be further
improved if trajectories were jointly planned for the two
robots at the same time. It is, therefore, our plan to extend
the framework to cooperating scenarios, which will be the
subject of future research.

Acknowledgments. This work has been funded by the European
Commission under the CleanSky 2 project LABOR (GA n.
785419), with Leonardo S.p.A. as Topic Manager.

References

1. E. Laudante, A. Greco, M. Caterino, M. Fera, Human robot
interaction for improving fuselage assembly tasks: a case
study, Appl. Sci. 10 (2020) 5757

2. A. Bruni, E. Concettoni, C. Cristalli, M. Nisi, Smart
inspection tools in robotized aircraft panels manufacturing.
In: Proceedings of the IEEE 5th International Workshop on
Metrology for AeroSpace (MetroAeroSpace), Torino, Italy,
2019, p. 649–654

3. K. Zhou, G. Ebenhofer, C. Eitzinger, U. Zimmermann, C.
Walter, J. Saenz, L.P. Castano, M.A.F. Hernandez, J.N.
Oriol, Mobile manipulator is coming to aerospace
manufacturing industry. In: Proceedings of the IEEE
International Symposium on Robotic and Sensors Environ-
ments (ROSE), Timisoara, 2014, p. 94–99

4. A. Campomaggiore, M. Costanzo, G. Lettera, C. Natale,
A fuzzy inference approach to control robot speed in human-
robot shared workspaces. In: Proceedings of the 16th
International Conference on Informatics in Control, Auto-
mation and Robotics, SCITEPRESS � Science and Tech-
nology Publications, 2019, p. 78–87

5. M. Costanzo, G.D. Maria, G. Lettera, C. Natale, D. Perrone,
A multimodal perception system for detection of human
operators in robotic work cells. In: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics
(SMC), Bari, Italy, 2019, p. 692–699

6. D. Massa, M. Callegari, C. Cristalli, Manual guidance for
industrial robot programming, Ind. Robot. 42 (2015)
457–465

7. The LABOR project. www.labor-project.eu
8. E. Ferrentino, P. Chiacchio, On the optimal resolution of

inverse kinematics for redundant manipulators using a
topological analysis, J. Mech. Robot. 12 (2020) 3

9. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics-
Modelling, Planning and Control (Springer-Verlag, London,
2009)

10. E. Ferrentino, P. Chiacchio, Redundancy parametrization in
globally-optimal inverse kinematics. In: Advances in Robot
Kinematics 2018, Springer International Publishing, 2018,
47–55

10 F. Storiale et al.: Manufacturing Rev. 8, 8 (2021)

http://www.labor-project.eu


11. S. Garnier, K. Subrin, K. Waiyagan, Modelling of robotic
drilling, Procedia CIRP 58 (2017) 416–421

12. M. Ahmadi, M. Jaber, F. Tang, High-performance multi-
body collision detection for the real-time control of a CTS
system, Trans. Can. Soc. Mech. Eng. 29 (2005) 163–177

13. A.P. Pashkevich, A.B. Dolgui, O.A. Chumakov, Multiobjec-
tiveoptimizationof robotmotion for laser cuttingapplications,
Int. J. Comput. Integr. Manuf. 17 (2004) 171–183

14. T. Yoshikawa, Manipulability and redundancy control of
robotic mechanisms. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, St. Louis,
MO, USA, 1985

15. A. Ajoudani, N.G. Tsagarakis, A. Bicchi, On the role of robot
configuration in Cartesian stiffness control, in Proceedings of
the IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, 2015, p. 1010–1016

16. R. Dubey, J.Y.S. Luh, Redundant robot control using task
based performance measures, J. Robo. Syste. 5 (1988)
409–432

17. D. Busson, R. Bearee, A. Olabi, Task-oriented rigidity
optimization for 7 DOF redundant manipulators, IFAC-
PapersOnLine 50 (2017) 14588–14593

18. E. Ferrentino, P. Chiacchio, A topological approach to
globally-optimal redundancy resolution with dynamic
programming, in ROMANSY 22 - Robot Design, Dynamics
and Control, Springer International Publishing (2018)
77–85

19. A. Dolgui, A. Pashkevich, Manipulator motion planning for
high-speed robotic laser cutting, Inter. J. Produc. Resea, 47
(2009) 5691–5715

20. J. Gao, A. Pashkevich, S. Caro, Optimization of the robot
and positioner motion in a redundant fiber placement
workcell, Mechanism and Machine Theory 114 (2017)
170–189

21. F. Storiale, E. Ferrentino, P. Chiacchio. (2020). Redundancy
resolution for joint displacements minimization and stiffness
maximization, https://youtu.be/lorD5UEwsfs

22. F. Storiale, E. Ferrentino, P. Chiacchio. (2020). Redundancy
resolution for stiffness maximization at the working pose,
https://youtu.be/34hrGI5F12Q

23. F. Storiale, E. Ferrentino, P. Chiacchio. (2020). Redundancy
resolution for stiffness maximization with large workspace
and complex pattern geometries, https://youtu.be/
yebIW6fVKLc

Cite this article as: Federica Storiale, Enrico Ferrentino, Pasquale Chiacchio, Planning of efficient trajectories in robotized
assembly of aerostructures exploiting kinematic redundancy, Manufacturing Rev. 8, 8 (2021)

F. Storiale et al.: Manufacturing Rev. 8, 8 (2021) 11

https://youtu.be/lorD5UEwsfs
https://youtu.be/34hrGI5F12Q
https://youtu.be/yebIW6fVKLc
https://youtu.be/yebIW6fVKLc

	INTRODUCTION
	HUMAN-ROBOT SEPARATION DISTANCE
	Experimental setup and camera calibration
	Segmentation pipeline
	Human Detection and Tracking
	Depth-Thermal mapping
	Sensor fusion
	CNN for Human Detection

	Human-Robot separation distance

	TRAJECTORY SCALING
	Single robot work cell
	Multi-robot work cell

	EXPERIMENTAL RESULTS
	Performances of DT-CNN
	Complete experiment

	CONCLUSIONS
	References
	Introduction 
	Human–Robot Interaction and Regulatory Frameworks 
	Methodology 

	Case Study 
	Results and Discussion 
	Conclusions 
	References
	Planning of efficient trajectories in robotized assembly of aerostructures exploiting kinematic redundancy
	1 Introduction
	1.1 Motivation of the paper

	2 Problem formulation
	2.1 Redundancy resolution
	2.2 Redundancy optimization with dynamic programming
	2.3 Force ellipsoids
	2.4 Algorithmic implementation

	3 Experimental results
	3.1 Time requirement
	3.2 Planned trajectories
	3.3 Stiffness analysis
	3.4 Comparative results

	4 Conclusions
	4 AcknowledgmentsThis work has been funded by the European Commission under the CleanSky 2 project LABOR (GA n. 785419), with Leonardo S.p.A. as Topic Manager.
	References


