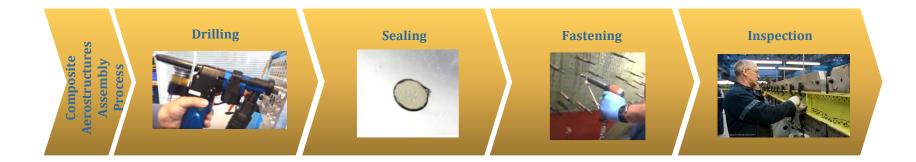


Lean robotized AssemBly and cOntrol of composite aeRostructures

LABOR in a nutshell

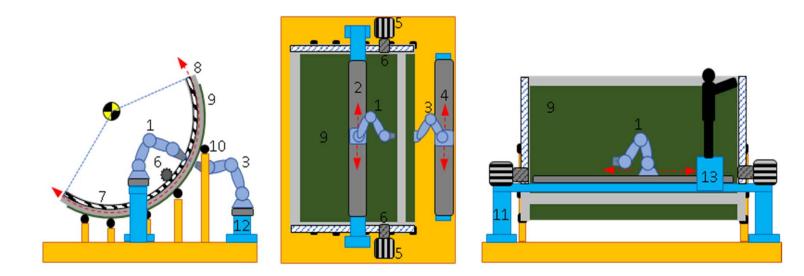
 Università degli Studi
della Campania *Luigi Vanvitelli* Scuola Politecnica e delle Scienze di Base *Dipartimento di Ingegneria*


www.labor-project.eu

- Objective 1
 - Development of a self-adaptive system able to perform an automated drilling and fastener insertion, based on robotized systems for composite structures
- Objective 2
 - Development of smart inspection tools
- Objective 3
 - Development of distributed intelligence architecture and Human-Machine-Interface
- Objective 4
 - Ergonomic design and work space monitoring algorithms
- Objective 5
 - Integration and prototyping of the LABOR system
- Objective 6
 - Demonstration in real environment

Assembly sub-operations

 Currently, these operations are mostly performed manually, especially for regional aircraft


Goal

- Lean and self-adaptive robotic technologies
 - small/medium size robots to provide higher capability of adaptation and easy integration in existing shop floors
 - adaptive processing tools to perform the different process tasks
 - advanced vision systems to reference the robots and check the quality of the work performed
 - Safe human-robot coexistence
 - distributed intelligence to build a more flexible solution

Approach

- Adoption of small-scale robots
 - to save costs and gain flexibility
 - smart fixtures and external axes to increase their workspace
 - standard process tools (electrical drilling tools or automated fastening tools) adapted to be integrated into a robot end effector compatible with quick tool-changers

- Assembly jig to hold the panel
- Two 6-axis robots mounted on sliding tracks
- Adaptive processing tools
 - Drilling tool
 - Sealing tool
 - Fastening tool
- Non-contact vision inspection tools
 - Tool for quality inspection of the fastener head
 - Tool for quality inspection of hole, countersink and fastener flushness
- Control software and HMI

Impact

- Productivity would benefit of increased freedom in the design of parts to which the automatic solution and assembly processes might easily adapt
- Advanced manufacturing means and methods
 - high production rates
 - reduced recurring costs
- Factory of the Future approach
 - intelligent automation
 - ergonomic work environment
 - optimal HMI

The figures

- Start date
 - 1 March 2018
- Duration
 - 36 months
- Resources
 - Total cost 2.509.375 €
 - EU contribution 1.995.062 €
 - Staff effort 281 Person Months
- Work packages
 - WP1: Requirements
 - WP2: Design
 - WP3: Test plan
 - WP4: Development
 - WP5: Pre-acceptance test
 - WP6: Acceptance test
 - WP7: Final demonstrator
 - WP8: Project management
 - WP9: Dissemination & Exploitation

Coordinator: AEA srl – Loccioni Group, Italy

Principal Investigator: Dr. Cristina Cristalli

- Beneficiary: University of Salerno, Italy
 - Principal Investigator: prof. Alessandro Marino

- Beneficiary: University of Campania Luigi Vanvitelli, Italy
 - Principal Investigator: prof. Ciro Natale

The consortium

Dipartimento di Ingegneria

UNIVERSITÀ DEGLI STUDI DI SALERNO

Thank you

LABOR project has received funding from the European Union's CleanSky Joint Undertaking (CSJU) research and innovation programme under grant agreement No 785419.

DI SALERNO

